Intel Core i7 Nehalem

Derek Anderson, Matt Burrough, Gregory Robinson, Caleb Tote

Instruction Execution

Caleb Tote

Nehalem Core Pipeline

High-level view

- Front-End Pipeline (FEP)
 - In-order
 - Four decoders
- Execution Engine (EE)
 - Out-of-order
 - Dynamic scheduler
- Retirement Unit (RU)
 - In-order

Front-end Pipeline

Figure 4: High-level diagram of the In-Order Front-End Nehalem Pipeline (FEP).

Instruction Fetch Unit (IFU)

- Instruction Pre-fetcher
- Pre-decode logic of the IQ
- Branch-Prediction Unit (BPU)
 - Direct/Indirect calls & jumps
 - Conditional branches
- Branch Target Buffer (BTB)
- Micro-Fusion
- Macro-Fusion

Execution Engine

- Register rename and Allocation Unit
- Reorder Buffer
 - Micro-op tracking
- Unified Reservation Station
 - Que up to 36 Micro-ops
 - Schedule / Dispatch Micro-ops
- Memory Order Buffer
 - Speculative & out of order loads / stores

Fetch

Instruction fetched from L2 Cache

Fetch

Instruction fetched from L2 Cache

Decode

- Instructions decoded, pre-fetched and queued
 - 16-byte pre-fetch buffer
 - 18-op instruction que
 - Macro-op fusion occurs
 - Branch Prediction

Optimize

 Instructions optimized and combined

Optimize

 Instructions optimized and combined

Execute

- Four FPUs
- MUL, DIV, STOR, LD
- 3 ALUs

Optimize

 Instructions optimized and combined

Execute

- Four FPUs
 - MUL, DIV, STOR, LD
- 3 ALUs

Write

- MOB ensures in-order writing
- Results written to private L1/L2 Cache

References

Kanter, David. *Real World Technologies*. 2 Apr. 2008. n.d. <u>http://www.realworldtech.com/page.cfm?ArticleID=RWT040208182719&p=4</u>

Thomadakis, Michael E. "The Architecture of the Nehalem Processor and Nehalem-EP SMP Platforms." n.d.

Cepeda, Shannon. Intel Software Network. "Pipeline Speak: Learning More About Intel Microarchitecture"

Nehalem PCU and Turbo Boost Technology

Greg Robinson

How Intel's Power Control Unit Works₂

How Nehalem's Turbo Boost Works 2 3

- Nehalem's PCU has made Intel's Turbo Boost more effectively utilized
- Past implementations of Turbo Boost haven't been as successful
- Nehalem's Turbo boost is less dependent on the activity of the processor's cores
- Turbo Boost increases a cores frequency by
 - 133MHz (if multiple cores are active)
 - 266MHz(if only a single core is active
- Turbo boost takes advantage of Nehalem's power gates, PLLs and PCU for effective utilization

How Nehalem's Turbo Boost Works 2

Turbo Boost Metrics 1

- Experiment provided by academic article "Evaluation of the Intel Core I7 Turbo Boost feature"
- For the experiment, two test sets were constructed from subsets of the SPEC CPU2006 benchmarks
- Four categories of applications were tested
 - 2 Memory Intensive / Floating Point applications
 - 2 Memory Intensive / Integer applications
 - 2 CPU intensive / Floating Point applications
 - 2 CPU intensive / Integer applications

TABLE III BENCHMARK SETS FOR PAIRED BENCHMARK TESTS

Classification	Set 1	Set 2
MF	Leslie3D	Namd
MI	Omnetpp	Astar
CF	Povray	Bwaves
CI	H264	Hmmer

Turbo Boost Metrics 1

- All possible pairs of the four applications were run using one pair per experiment
- The pairs of applications were executed first on the same physical core and then on separate cores
- The pairs of applications were also executed with and without Turbo Boost activated and the speedup was calculated
- For each test, one application in the pair was identified as the principal application and the second was identified as the interfering application

Turbo Boost Metrics 1

(a) Speedup for Set 1 due to Turbo (Same Core)

(b) Speedup for Set 1 due to Turbo (Different Cores)

Turbo Boost Experiment Conclusion 1

- Using the experiment's test results, the conclusion stated that "Turbo Boost can provide on average up to a 6% reduction in execution time."
- The study also found that in all cases Turbo Boost enhanced performance

Turbo Boost References

- Charles, James; Jassi, Preet; Narayan, Ananth; Sadat Abbas and Alexandra Fedorova, "Evaluation of the Intel® CoreTM i7 Turbo Boost feature," Workload Characterization, 2009. IISWC 2009. IEEE International Symposium on, vol., no., Sept. 2009
- Shimpi, Anand L. "Nehalem Everything You Need to Know about Intel's New Architecture." *AnandTech*. 3 Nov 2009. Web. 5 Mar. 2012. http://www.anandtech.com/show/2594/12.
- Stokes, Jon. "Power Gating and Turbo Mode: Intel Talks Nehalem at IDF." Ars Technica. 15 Jan. 2009. Web. 18 Mar 2012. http://arstechnica.com/hardware/news/2008/08/power-gating-and-turbo-mode-intel-talks-nehalem-at-idf.ars.

Memory Hierarchy

Matt Burrough

i7 Die ^{1,2}

Memory Controller³

- Previous Intel processors used a separate memory controller in the North Bridge, connected via the Front Side Bus
- Nehalem integrates the controller, which allows the cores to access it directly.
- Multi-Processor Nehalem systems are NUMA.

Cache Sizes & Associativity 4,5,6,7

L1 |:

- 32 KB (per core)
- 4-way set associative

L1 D:

- 32 KB (per core)
- 8-way set associative

L2:

- 256 KB (per core)
- 8-way set associative
- Exclusive
- L3:
- 8 MB
- 16-way set associative
- Inclusive

Latencies 4,5

L1 (D&I): 4 cycles (4)

- L2: 10 cycles (10)
- *L3:* 35-40 cycles (38)

Comparison ^{8,9}

Processor	Lı	L2	L ₃
Conroe (Core 2, 65 nm)	3	14	N/A
Yorkfield (Core 2, 45 nm)	3	15	N/A
Xeon 7400 (Penryn, 45 nm)	3	15	110
AMD Phenom II X6	3	14	55

Latency per access in nanoseconds

System	No of processes	Latency (ns)
Harpertown	1	102
-	2	103
	4	117
	8	122
Nehalem	1	74
	2	76
	4	77
	8	78
	16 (SMT)	86

Memory References

- 1. "Intel Launches Fastest Processor on the Planet." Intel. 17 Nov. 2008. Web. 3 Apr. 2012.
- Delattre, Franck. "Report: Intel Nehalem Architecture (page 4: Cache Hierarchy)." BeHardware. 28 Oct. 2008. Web. 2 Apr. 2012.
- 3. Thomadakis, M. "The Architecture of the Nehalem Processor and Nehalem-EP SMP Platforms." 17 Mar. 2011. Web. 2 Apr. 2012.
- 4. "Intel® 64 and IA-32 Architectures Optimization Reference Manual." Intel. June 2011. Web. 24 Mar. 2012.
- 5. Molka, D., et al. "Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor System". Parallel Architectures and Compilation Techniques - Conference Proceedings, PACT. 2009. Web. 25 Mar. 2012.
- 6. Levinthal, David. "Performance Analysis Guide for Intel® Core™ i7 Processor and Intel® Xeon™ 5500 processors." Intel. 2009. Web. 22 Mar. 2012.
- 7. Singhal, R. "Inside Intel® Next Generation Nehalem Microarchitecture." Intel Developer Forum. Intel. 2009. Web. 1 Apr. 2012.
- 8. Shimpi, Anand L. "The Nehalem Preview: Intel Does It Again." AnandTech. 5 June 2008. Web. 23 Mar. 2012.
- 9. Shimpi, Anand L. "The Bulldozer Review: AMD FX-8150 Tested." AnandTech. 12 Oct. 2011. Web. 30 Mar. 2012.
- 10. Bugge, H. O. "An Évaluation of Intel's Core i7 Architecture using a Comparative Approach." Computer Science - Research and Development 23.3-4 (2009): 203-9. Web. 22 Mar. 2012.

QuickPath Interconnect (QPI)

- First developed by Intel in November of 2008.
- Replaces the traditional Front-Side Bus (FSB) interconnect technology.
- Allows bilateral serial communication between CPU cores, memory and other IO devices.

History Front-Side Bus (FSB) interconnect

- One interconnect each device shares.
- Creates a bottleneck when fetching instructions or accessing memory.
- Causes the CPU to waste cycles waiting for information.

Current Day

- Point to Point Protocol instead of a bus.
- Consists of a single wire pair between each device.
- Able to operate at 2.4 GHz, 2.93 GHz, or 3.2 GHz depending on the operating frequency of the device.

QuickPath Interface

- Physical
- Link
- Routing
- Protocol

Technology	Speed (GT/s)
Intel Front-side bus	1.6
PCI Express Gen 1	2.5
Fully Buffered DIMM	4
PCI Express Gen 2	5
QuickPath Interconnect	6.4
PCI Express Gen 3	8

References

- Kurd, Nasser, Praveen Mosalikanti, Mark Neidengard, Jonathan Douglas, and Rajesh Kumar. "Next Generation Intel⁻ Core[™] Micro-Architecture (Nehalem) Clocking."*IEEE* Journal of Solid-State Circuits 44.4 (2009): 1121-129. Print.
- Ziakas, Dimitrios, Allen Baum, Robert A. Maddox, and Robert J. Safranek. "Intel® QuickPath Interconnect Architectural Features Supporting Scalable System Architectures." *IEEE Symposium on High Performance Interconnects* 18 (2010). Print.
- Mutnury, Bhyrav, Frank Paglia, James Mobley, Girish K. Singh, and Ron Bellomio.
 "QuickPath Interconnect (QPI) Design and Analysis in High Speed Servers."*Electrical Performance of Electronic Packaging and Systems* 19 (2010). Print.
- Intel. "White Paper Intel® QuickPath Architecture." Web. 20 Apr. 2012.
 http://www.intel.com/pressroom/archive/reference/whitepaper_QuickPath.pdf.
- Intel. Intel. 2009. Web. 22 Apr. 2012.
 http://www.intel.it/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html.
- "Intel Core I7 Processors: Nehalem and X58 Have Arrived."Http://hothardware.com/Reviews/Intel-Core-i7-Processors-Nehalem-and-X58-Have-Arrive. Web. 20 Apr. 2012.