Leaks in Web Browser Privacy Modes

Matt Burrough
Burrogh2@illinois.edu
CS 461

November 2012

Abstract

This paper provides an examination of five possible circumvention techniques for browser
privacy modes. These include residual files, malicious extensions, browser crashes,
extension crashes, and non-terminated browsers. The success of these techniques is
evaluated across Google Chrome, Mozilla Firefox, Microsoft Internet Explorer, Opera, and
Apple Safari running on a Windows 7 system.

Disclosure: | have been employed by Microsoft full time for the past 56 months. That said, | do not work on
the Internet Explorer team and have no direct contact with them. | have not used any internal Microsoft
resources in the preparation of this report, and have not intentionally favored Internet Explorer or omitted any
findings. Additionally, | have not reverse-engineered any of the products described in this report. This paper’s
contents are the sole work and ownership of the author, and do not represent any opinions of his employer.
Microsoft has not reviewed or approved its content in any way.

THIS PAPER MAY NOT BE REDISTRUBTED OR POSTED WITHOUT EXPLICIT PERMISSION FROM THE AUTHOR.

Introduction

Browser “privacy” modes have been included in the last several releases of every major
web browser on the market. While this functionality does nothing to protect the identity
of a user to the web sites visited, nor to hide browsing habits from network providers
(Soghoian, 2010), users have come to trust these modes to keep confidential their web
history from others with access to their computers. Is it possible that this trust is
misplaced? In spite of the prevalence of privacy modes, little research has been done to
validate if ones web history truly is protected when using them.

Two academic papers on the topic are “Forensic Analysis of Private Browsing Mode in
Popular Browsers” (Mahendrakar, Irving, & Patel, 2011) and “An Analysis of Private
Browsing Modes in Modern Browsers” (Aggarwal, Bursztein, Jackson, & Boneh, 2010).
The former mainly examines system memory using forensic analysis tools during and
immediately after private browsing. The later takes more of a survey approach, examining
many facets of browser privacy.

This paper aims to determine if a 3™-party could determine the browser history of a user
utilizing private browsing by examining five areas where browser history may be exposed
in spite of running in a privacy mode. This is not meant to be a fully exhaustive list of
tests, but rather to highlight some potential areas of concern and validate if that concern
is warranted. The tests are:

1. Confirm that files are not left behind by the browser itself when private mode is
deactivated. This will be accomplished by reviewing process monitor logs to
observe which files are modified during private browsing and validating that they
have been scrubbed or removed when the session is ended.

2. Creating a collection of browser extensions that covertly leak a user’s browsing
history to a 3" party. Browsers will be tested to see if they allow the extension to
load in private mode, and if so, if they at least provide some warning or make the
loading of the extension difficult for the user.

3. Determine what information is saved and reported to browser vendors when a
browser crashes in privacy mode. In order to facilitate a crash, a debugger will be
used to induce an unhandled exception.

4. Validate if a crashing browser extension results in information disclosure to the
browser vendor.

5. Investigate what information can be obtained from a browser in privacy mode if a
user closes any open tabs but does not exit the process.

Each of these are either novel when compared to areas examined in existing literature, or
are approached in a different way than in the previous papers. For example, where other
papers look at popular extensions to see if they disclose any history from private sessions,

the papers do not attempt to create a malicious extension. Additionally, this paper seeks
to include Opera where possible, which was omitted from other papers.

Test Machine Configuration

To analyze each browser, a virtual machine was created in VirtualBox 4.2.2 running on a
Windows 7 x64 SP1 host on an Intel i7-950 with 12 GB of RAM and VT-x enabled. The
virtual machine was built with 2 GB of allocated memory, two virtual cores, a 50 GB VHD
disk file, and Windows 7 Home Basic x86 SP1. Windows 7 was chosen as it is both widely
used and supports a wide variety of browsers. The x86 architecture was chosen to avoid
the complication of WOW64 when using debugging tools.

The VM was configured with each of the following:

e All updates offered on Windows Update as of 10/19/2012 except Bing Desktop
and Silverlight 5

e VirtualBox guest additions 4.2.2

e Process Monitor v3.03

e Process Explorer v15.23

e ProcDump v5.0

e Microsoft Network Monitor v3.4

e Microsoft Security Essentials

e NotMyFault

e The Debugging Tools for Windows package v6.2.9200.16384

e Windows 8 SDK (as much as required to install the debugging tools package)

e (S Set for complete memory dumps, page file set to 2.5 GB min/4 GB max

e 1280x1024 resolution (single screen)

e The system environment variable “ NT SYMBOL PATH” set to
“srv*c:\symbols*http://msdl.microsoft.com/download/symbols;SRV*c:\symbols*
http://symbols.mozilla.org/firefox;srv*c:\symbols*http://chromium-browser-
symsrv.commondatastorage.googleapis.com”

Otherwise, the VM was installed with all default options. The VM NIC was bridged to the
author’s home network and the VM’s network policy was set to “Home”. One account
was created during Windows installation named “testuser”. It had administrative rights,
though UAC was enabled so the account typically ran with least privilege.

With these programs and settings in place, the VM was snapshotted so it could be
reverted to this state between each test to ensure a clean testing environment. From
here, five sub-snapshots were created, one for each browser. (Note that all sections are
written with browsers in alphabetical order.)

Chrome

Google Chrome 22.0.1229.94m was installed in this snapshot and set as the default
browser and with usage and crash reporting enabled. A reboot was performed after the
installation but before taking the snapshot.

Firefox

This snapshot had Firefox 16.0.1 installed using the standard install option and set as the
default browser. The homepage was set to a blank page, and Mozilla usage and error
reporting was enabled (opted-in) during installation. Hardware acceleration was set to
disabled to avoid any issues with the VirtualBox vGPU. A reboot was performed after the
installation but before taking the snapshot.

Internet Explorer

This snapshot was upgraded to Internet Explorer (IE) 9. IE was configured to use
recommended security and compatibility settings. The home page was set to about:blank.
Software rendering was set to enabled to avoid any issues with the VirtualBox vGPU. A
reboot was performed before taking the snapshot.

Opera

In this snapshot, Opera 12.02 was installed as the default browser. The home and startup
pages were set to about:blank. A reboot was performed after the installation but before
taking the snapshot.

Safari

Finally, Safari 5.1.17 was installed with all installation options enabled. The start page was
set to an empty page. A reboot was performed after the installation but before taking the
snapshot.

Test 1: Monitoring for residual files

The most obvious violation of the concept of private browsing is traces of websites visited
while in private mode left behind on the user’s disk. For this test, each browser was
started in its VM snapshot, and put into private mode. Process Monitor was then
launched and filtered to just processes related to that browser. The first tab in private
browsing was navigated to http://www.burrough.org while a second tab was created and
navigated to http://en.wikipedia.org/wiki/Cockapoo. (The dog breed Cockapoo was
chosen as the article is relatively short but contains several images, and the author is
partial to that breed.) Once both pages finished loading, the browser was exited and
process monitor stopped. The process monitor log was then reviewed for file and registry

http://www.burrough.org/
http://en.wikipedia.org/wiki/Cockapoo

entries that were created during the session, and those items were then searched for in
the registry and file system.

Chrome

Chrome primarily used one directory and two registry keys while operating in incognito
mode:

HKEY_LOCAL_MACHINE\SOFTWARE\Google\Update\ClientState
HKEY_CURRENT_USER\Software\Google\Update\ClientState
C:\Users\testuser\AppData\Local\Google\Chrome\User Data\Default\

Reviewing the registry keys, these appear to mostly contain information about Chrome
itself like installation path, version number, language, and update check information, none
of which appears to be sensitive.

Within the Default folder, there were nine files that were modified during incognito
browsing, as well as one subfolder, Cache, which contained one modified file. The files
each came in pairs, with one file being a journal version for the other, likely for
consistency. The files were History, Web Data, Cookies, and Preferences, plus a file
data_01 in the cache directory. Using tools from NirSoft (Sofer, 2012), each file could be
decoded.

ChromeHistoryView from NirSoft revealed that no entries were left in the web history
from the incognito session.

The Web Data files were in binary form, but contained a SQLite header, so SQlite
Database Browser from http://sourceforge.net/projects/sqlitebrowser/ was used to
examine the files. The database contained a series of tables for form auto-complete
information. The only one populated was the list of search engines to use — Bing, Google,
or Yahoo. Otherwise, all of the tables were blank.

Nirsoft did not make a Cookies viewer for Chrome, but the file was again a SQlite
database, so again SQLite browser was used to examine the file. It appears that all of the
cookies were for a previous session and none were from visiting Wikipedia. It was
confirmed that, under normal browsing mode, Wikipedia would place a cookie on the
system.

The preferences file was not binary, and was human readable. It appeared to contain the
user’s browser preference information, and did not contain anything private.

Using NirSoft’s ChromeCacheView tool, the files in the cache subdirectory were examined.
Although one file had a modified timestamp reflecting the time of private browsing, no
entries in the cache were from that session.

http://sourceforge.net/projects/sqlitebrowser/

Firefox

Process monitor revealed a number of files that were modified at the time of private
browsing. There were no modified registry keys/values. All of the modified files were
located in two folders in the user’s profile:
C:\Users\testuser\AppData\Local\Mozilla\Firefox\Profiles\(Mozilla Profile ID)\
C:\Users\testuser\AppData\Roaming\Mozilla\Firefox\Profiles\(Mozilla Profile ID)\

Reviewing the files, many were specific to the Firefox application, such as last window
size, timestamp of last successful exit, and the like. These pose no risk of information
disclosure, other than the fact that the browser was run at this specific time.

One subfolder of the user’s profile that was modified was the cache directory. This
initially was cause for some concern, as browser caches should not contain data resulting
from private browsing. Mozilla keeps its cache in a non-human viewable format, so
MozillaCacheView from NirSoft was used to view the contents of the cache. This revealed
that the cache only contained the initial Firefox start page that was opened before the
browser could be put into private browsing mode. No other content was contained in the
cache.

Another file that was updated was cookies.sqglite. This file contains cookie information for
the user. NirSoft’s MozillaCookiesView was used to open the file. It contained three
cookies, one from Mozilla.org, one from google.com, and one from webtrendslive.com. It
appears that all three were placed by the initial start page, and not by subsequent private
browsing.

The only other file in the profile that was updated was urlclassifier3.sqlite. It is a binary
file so its contents could not be directly viewed. According to MozillaZine, this file is used
to contain a list of known malware and phishing sites and is updated from a feed from
Google (Barnabe, 2007). Thus, it is unlikely that this file contains any personal
information, though this was not confirmed given the inability to read the file.

Internet Explorer

There was considerable registry access during the use of InPrivate mode in Internet
Explorer. While many of the other browsers seem to rely largely on configuration and
preference files, many of these settings are found in the registry for IE, mainly under
HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\. Examination of this key
and searching the registry as a whole showed that none of the private browsing history
was stored in the registry.

In terms of file system write access, it was mostly concentrated in
C:\Users\testuser\AppData\Local\Microsoft\Windows\Temporary Internet Files\Low and

C:\Users\testuser\AppData\Local\Microsoft\Windows\History. ~ There was also some
access to C:\Users\testuser\AppData\Roaming\Microsoft\Windows\IEDownloadHistory
and C:\Users\testuser\AppData\Roaming\Microsoft\Windows\Cookies\Low. These are
the folders responsible for IE’s cache, history, download history, and cookies respectively.
One benefit of IE is that it stores all of these files as actual individual files, instead of in
different databases. This made visually inspecting the folders to confirm that no traces of
any of the files from the InPrivate session were still present possible.

IE also uses index.dat files in these locations to catalog the files present. Most of these
files showed no evidence of any of the files or URLs from InPrivate browsing, however the
index.dat located in C:\Users\testuser\AppData\Local\Microsoft\Windows\Temporary
Internet Files\Low\Content.IE5\ did contain the burrough.org URL, though not Wikipedia’s
(Figure 1). Once this entry was discovered, an Index.dat viewer (Gould, 2008) was
installed to gain more insight into the record. This utility revealed that the entry was a
REDR record (Figure 2), which according to (Kornblum & Metz, 2007), is a redirected URL.
This was confirmed through further testing, which revealed that entering the shorter
“burrough.org” redirected the browser to “http://www.burrough.org/pages/index.aspx.”
Other redirection pages like fwlink pages on go.microsoft.com (used to create
permalinks/URL shortening in Microsoft documentation) also appear in this index.dat as
REDR records.

B8900||52|45 44 52|01|/00 00 00|F8 5C 00|00(00 53 2C|23 |[REDRI DI =000 5, “j
L|2ZF ZF\T7T7 77 7TT|2E|&2 |75 TZ 72 EF t|t|p|z|/|f | w|w|w|- |blurlc|o
72|67|2F|00 | BE AD|DE EF|BE|AD|DE||u/gh -|oz|g|/|l 3 -|Fi36-F

Figure 1: IE Cache Index.dat

[B
Index Dat Spy ﬁ

b File:
' Chowm-mountiIE crumbshcachehindex.dat
"~ Record Mumber: 31
Record Type: REDR
Record Size: 128 bytes

Ik |

Details: |
| URL: http://www.burrough.org/ :
| |
T e |
([| —— |
I |

Figure 2: Index Dat Spy Entry

Opera

Opera seems to store all of its cookie, history, and cache information, as well as browser
settings in two directories in the user’s profile:
C:\Users\testuser\AppData\Roaming\Opera\Opera
C:\Users\testuser\AppData\Local\Opera\Opera

The majority of the files in these directories are either DAT files that are largely ASCII, INIs,
or XML. Reviewing every file with a modified timestamp from the time of the private
session, none contained any sensitive information. NirSoft’s OperaCacheView showed the
same. Opera did not appear to store anything of interest in the registry.

Safari

Reviewing entries for the Safari and WebKit2WebProcess processes, once accesses for
things like font lookups, default web browser settings, and DLL loads were excluded, Safari
actually made relatively few calls to the file system and essentially none to the registry.
Those that it did make went to the same two folders seen for other browsers:
C:\Users\testuser\AppData\Local\Apple Computer\Safari
C:\Users\testuser\AppData\Roaming\Apple Computer\Safari

Most of the files therein are SQLite databases, with a few other binary files and some
XML. Reviewing each, none appeared to contain any information from the private
browsing session. NirSoft’s SafariCacheView further confirmed this.

Test 2: Spying Browser Extension

In this test, a custom browser extension was created for each browser tested. The
extension generally tried to monitor for page navigation and provide this information to a
third party, without notice to the user.

Chrome

Chrome offers a powerful extension system based on JavaScript. The WebNavigation
sample code (West, 2012) from Chrome’s sample area was used as a base for this
extension. The sample code was first modified to remove the Ul portion of the code that
is exposed to the user — this code originally provided a history-type view to the user in a
pop-up menu, but that would hinder the covert nature of add-in.

Next, code was added to post the URL of any completed page navigation to pastebin.com.
This site was chosen as it provides an API that allows anonymous submissions via HTTP
POST messages, which can later be viewed. This would not be an ideal site for

implementing a history-recording add-on in practice, as it limits the number of posts
submitted per day from a given user/computer. However, it would trivial for an attacker
to set up a simple web server that accepted POSTs and stored them in a simple database.

The extension was packaged in to a Chrome Extension (.crx) file. When loading the
extension, Chrome presented a dialog box alerting the user that the extension would have
permission to their browsing activity and to pastebin.com (Figure 3).

Confirm New Extension

Add "LeakyChrome™? Neo ¥

It can: l—o LI }

= Access your data on *.pastebin.com

= Access your tabs and browsing activity

Add] e

Figure 3: Chrome Extension Permission Dialog

Once the add-in was loaded, it still will not run in Chrome’s “incognito” mode by default.
For it to do so, the user must check the option in Chrome’s Extension list (Figure 4). Upon
selecting it, Chrome displays a warning message (Figure 5).

98 Extensions

C | [} chrome://chrome/extensions/

Chrome Extensions) Developer mode
History
LeakyChrome 0.2 ¥ Enabled T
I Extensions b o) '
L WebMNavigation Extension that writes URLs to PasteBin

Settings -
|| Allow in incegnito

Figure 4: Chrome extension list

3 Extensions

€ | [chrome://chrome/extensions,

Chrome Extensions Developer mode

) 2 LeakyChrome 0.2 7 Enabled
I Extensions - B

o Allow in incognito

‘Warning: Google Chrome cannot prevent extensions from recerding your browsing history. To disable
this extension in incognite mede, unselect this option,

Figure 5: Chrome Extension Warning

After the plugin was installed and checked to allow it to run in incognito mode, it
functioned as expected. There were no further warnings that it was submitting URL
history to PasteBin, and the URLs appeared on the PasteBin site. Further launches of
Chrome in incognito mode provided no warning that any extensions were enabled,
though the start page of chrome does mention that loaded extensions could violate their
privacy:
“You've gone incognito. Pages you view in this window won't appear in your browser history
or search history, and they won't leave other traces, like cookies, on your computer after you
close all open incognito windows. Any files you download or bookmarks you create will be
preserved, however.

Going incognito doesn’t affect the behavior of other people, servers, or software. Be
wary of:

Websites that collect or share information about you

Internet service providers or employers that track the pages you visit
Malicious software that tracks your keystrokes in exchange for free smileys
Surveillance by secret agents

People standing behind you

Learn more about incognito browsing.

Because Google Chrome does not control how extensions handle your personal data, all
extensions have been disabled for incognito windows. You can reenable them individually in
the extensions manager.”

This message only loads if the user has not specified their own home page, and the
warning about extensions at the end of the message appears regardless if the user has any
extensions enabled in incognito mode.

Firefox

Firefox has a very strong extension API that, like Chrome, allows developers to create
extensions in JavaScript. Using the same method as in Chrome, an extension was written

10

that reports URLs to pastebin.com upon page load. The code between the two browsers
was similar, though the page change notification handling was a bit different. In Chrome,
the webNavigation API allows access to page change notifications, while Firefox allows
onPageload DOM event listeners to be registered. Once fired, the code to perform the
POST was identical aside from debug prints for testing. Two resources that were
invaluable for preparing a Firefox plugin were (Ben, 2005) and (Jung, 2007).

One interesting aspect about Firefox is that it is very trusting of the extensions that users
load. When dropping the .xpi extension file onto Firefox, it presented a warning that the
extension was not signed, but allowed the installation to proceed (Figure 6). The Ul did
not give any indication about what types of access or operations the plugin might use.

Software Inzstallation @

Install add-ons only from authors whom you trust.

Malicious software can damage your computer or viclate your privacy.

You have asked to install the following itern:

* leakyfox extension for Firefox (Author not verified)
file:/// T/ Users/testuser/Desktop/leakyfox.xpi

InstaIINuw] | Cancel

Figure 6: Firefox Extension Installation

After the plugin was installed, Firefox made no mention about the plugin or its activity
when switched into private browsing mode. In fact, even the private browsing warning
page did not mention extensions (Figure 7). The linked “Learn More” page
(http://support.mozilla.org/en-US/kb/private-browsing-browse-web-without-saving-
info?redirectlocale=en-US&as=u&redirectslug=Private+Browsing) also failed to mention
extensions. The only documentation stating that extensions remained enabled in private
browsing mode was from a moderator on the Mozilla forums (cor-el, 2012).

11

e Private Browsing

Firefox won't remember any history for this session.

In a Private Browsing session, Firefox won't keep any browser history, search history,
download history, web form history, cookies, or temporary internet files. However,
files you download and bookmarks you make will be kept.

To stop Private Browsing, select Tools » Stop Private Browsing, or close Firefox.

@ while this computer won't have a record of your browsing history, your internet service
provider or employer can still track the pages you visit.

Learn hore

Figure 7: Firefox Private Browsing Start Page

Internet Explorer

Internet Explorer’s extension interface is quite different from Chrome’s. It relies on C/C++
DLLs to be loaded which interact with IE’'s COM interface. Recently, several examples of
.NET (managed) extensions have appeared online. These samples leverage .NET’s
platform invocation (p/invoke) feature. A particularly good sample and explanation of
interacting with IE from a .NET library can be found in (Jones, 2010). Using Jones’ example
as a starting point, the message box call was removed and additional code was added to
create a WebClient object that submits the URL of the current page to PasteBin’s POST
interface as the Chrome extension did. The extension submits the URL as soon as a page
finishes loading.

A major difference from Chrome’s implementation is that Internet Explorer cannot detect
the permissions/capabilities of extensions because they are native binaries. As such, the
prompt to enable an Internet Explorer extension simply asks the user whether to enable it
(Figure 8).

The [EAddOn.BHO" add-on from an unknown publisher is ready for use, Enable Don't enable

Figure 8: Internet Explorer Extension Installation

Upon loading the extension and restarting Internet Explorer, the extension began
reporting the URLs of loaded pages in normal IE operation. However, after switching into
IE’s “InPrivate” mode, no pages were reported. Further investigation revealed that, by
default, IE does not load any extensions while in InPrivate mode. This behavior can be
altered by changing a setting in Internet Options (Figure 9). (IE does not allow individual

12

extensions to be opted-on/off in its privacy mode as Chrome does.) Once changed, the
extension worked as expected.

Much like Chrome, the default start page of IE when in InPrivate mode is a static message
that does not indicate if any extensions are loaded:

“InPrivate Browsing helps prevent Internet Explorer from storing data about your browsing session.
This includes cookies, temporary Internet files, history, and other data. Toolbars and extensions are
disabled by default. See Help for more information.

To turn off InPrivate Browsing, close this browser window.”

General | Security | Privacy |Conhent I Connections I Programs I Advance

Settings

Select a setting for the Internet zone,
Medium

- Blocks third-party cookies that do not have a compact

privacy policy

- Blocks third-party cookies that save information that can
— be used to contact you without your explict consent

- Restricts first-party cookies that save information that

can be used to contact you without your implict consent

[Sites] [Import] [Advanced] Default

Location

| MNewer allow websites to request your Clear Sites

physical location

Pop-up Blocker
Turn on Pop-up Blodker
InPrivate

[|Disable toolbars and extensions when InPrivate Browsing starts!

Figure 9: Internet Explorer Privacy Settings

Opera

After hours of reviewing Opera extension documentation, sample extensions, and testing
multiple iterations of code, the author was unable to create an Opera Extension
(“Widget”) that would reliably fire when a page completed loading. Even using Opera-
provided sample extensions that were supposed to function on page load without any
changes, the extensions did not fire. With Opera’s extension developer community
seeming to be smaller than that of other browsers, and its less advanced plug-in
infrastructure, an attempt to get a prototype working was deemed futile.

13

In testing extension code, it was noted that installing any add-in that accesses sensitive
information triggers Opera to include two check boxes on the Extension installation
window (Figure 10). By default, extensions that access any private information by default
do not load in Opera’s private tabs. A user would need to opt-in explicitly to enable the
extension.

-
Install Extension @

Install extension?

Leak Test

* Privacy

Allow interaction with secure pages
[] Allow interaction with private tabs

Install JI Cancel

Figure 10: Opera Extension Installation Prompt

Safari

This test was not performed on Safari because Apple requires developers to sign an
explicit agreement that states that they will not produce extensions that intentionally
violate its users’ privacy. The other browsers tested in this section did not have a formal
EULA and registration process required to develop an extension.

Safari’s extension platform appears to be JavaScript-based like Chrome, so it is
conceivable that a similar attack here would have similar success as in Chrome.
Additionally, in testing publically available extensions in Safari, they continue to load in
Private mode without any warning or indication of possible privacy violations. The
extensions load by default in Private mode, without any reconfiguration or settings
change required.

14

Test 3: Crashing Browser

This test involves simulating a code defect in a browser by attaching a debugger to the
browser process when in private mode, breaking in, replacing an instruction with an
unhandled illegal operation, and detaching the debugger. Upon detach, the process will
resume and crash. Any resulting crash dump or error reporting logs will be examined to
see if information about the browsing session can be determined.

For each test, the browser was put into private mode and two tabs were opened — one to
www.burrough.org and one to wikipedia.org/wiki/cockapoo. Windbg.exe was then
attached to the main browser process, and an instruction was changed to cause a crash.
Process Monitor was used to look for any dump files or other crash info written to the file
system.

Chrome

For Chrome, with two tabs open in incognito mode, there were three Chrome processes
(one for each tab, plus one parent process), as well as a GoogleChrashHandler.exe
instance. The debugger was attached to the parent Chrome process. After breaking in,
the debugger was used to unassembled the topmost Chrome function on the main thread
from the point where user32.dll would return to it. About 10 instructions in, the code
contained a call instruction. Using the debugger’s memory editing command (eb), the
command was changed to call a null pointer (0000000). The debugger was then detached
gracefully so the process would resume, but not be running under the windbg debugger.
This sequence of commands is illustrated in Figure 11.

Microsoft (R) Windows Debugger Version 6.2.9200.16384 X86

Copyright (c) Microsoft Corporation. All rights reserved.

*** wait with pending attach

Symbol search path is:
srv*c:\symbols*http://msdl.microsoft.com/download/symbols; SRV*c:\symbol
s*http://symbols.mozilla.org/firefox;srv*c:\symbols*http://chromium-
browser-symsrv.commondatastorage.googleapis.com

Executable search path is:

ModLoad: 00c20000 00457000 C:\Program
Files\Google\Chrome\Application\chrome.exe

(82c.bc0) : Break instruction exception - code 80000003 (first chance)
eax=7ffa0000 ebx=00000000 ecx=00000000 edx=779bfl7d esi=00000000
edi=00000000

eip=7795410c esp=072c£954 ebp=072c£980 iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 £s=003b gs=0000

ef1=00000246

Figure 11: Chrome Crash Setup

15

ntdll!DbgBreakPoint:

7795410c cc int 3

0:030> ~0s

eax=00000000 ebx=0031£f8b4 ecx=00000000 edx=003d8600 esi=00000001
edi=0031£8d4

eip=77967094 esp=0031£f864 ebp=0031£900 iopl=0 nv up ei pl zr na
pe nc

cs=001b ss=0023 ds=0023 es=0023 £s=003b gs=0000

ef1=00000246

ntdll!KiFastSystemCallRet:

77967094 c3 ret

0:000> k

ChildEBP RetAddr

0031£860 77966a04 ntdll!KiFastSystemCallRet

0031£864 75bcba8e ntdll!NtWaitForMultipleObjects+0xc

0031£900 77aabd66 KERNELBASE!WaitForMultipleObjectsEx+0x100

0031£948 75£862f9 kernel32!WaitForMultipleObjectsExImplementation+0xel
0031£99c 6984b9c2 USER32!RealMsgWaitForMultipleObjectsEx+0x13c
0031£9d8 6984b5f£8

chrome 696b0000!base: :MessagePumpForUIl: :WaitForWork+0x24

0031fa08 696e27c7 chrome 696b0000!base: :MessagePumpForUI: :DoRunLoop+0xb8

0031£d70 00000000 ntdll! RtlUserThreadStart+0xlb

0:000> * //Let's look at the return point into the first chrome
function...

0:000> u 6984b9c2

chrome 696b0000!base: :MessagePumpForUIl: :WaitForWork+0x24:

6984b9c2 85c0 test eax, eax

6984b9c4 7546 jne

chrome 696b0000!base: :MessagePumpForUI: ::WaitForWork+0x6e
6984b9c6 6a06 push 6

6984b9c8 8945e4 mov dword ptr [ebp-1Ch],eax
6984b9cb 8945e8 mov dword ptr [ebp-18h],eax
6984b9%ce 8945ec mov dword ptr [ebp-14h],eax
6984b9d1l 8945f0 mov dword ptr [ebp-10h],eax
6984b9d4 8945f4 mov dword ptr [ebp-0Ch],eax
0:000> u

chrome 696b0000!base: :MessagePumpForUI: :WaitForWork+0x39:
6984b9d7 8945f8 mov dword ptr [ebp-8],eax
6984b9%da 8945fc mov dword ptr [ebp-4],eax
6984b9dd f£f152416896b call dword ptr [(6b891624)]
6984b9%e3 cle810 shr eax, 10h

6984b9%6 a806 test al, 6

6984b9%e8 7422 je (6984balc)

6984b9%ea 6a00 push 0

6984b9%ec 680e020000 push 20Eh

0:000> * //The call looks like a good candidate to replace with a call
to 0

0:000> eb 6984b9dd

6984b9dd ff ff

ff

6984b9%de 15 15

15

Figure 11: Chrome Crash Setup (continued)

16

6984b9df 24 00

00

6984b9%0 16 00

00

6984b9%1 89 00

00

6984b9%2 6b 00

00

6984pb9%e3 cl

0:000> u 6984b9c2 L10

chrome 696b0000!base: :MessagePumpForUI: :WaitForWork+0x24:
6984b9c2 85c0 test eax, eax

6984b9c4 7546 jne

chrome 696b0000!base: :MessagePumpForUI: :WaitForWork+0x6e
6984b9c6 6a06 push 6

6984b9c8 8945e4 mov dword ptr [ebp-1Ch],eax
6984b9cb 8945e8 mov dword ptr [ebp-18h],eax
6984b9%ce 8945ec mov dword ptr [ebp-14h],eax
6984b9d1l 8945f0 mov dword ptr [ebp-10h],eax
6984b9d4 8945f4 mov dword ptr [ebp-0Ch],eax
6984b9d7 8945f8 mov dword ptr [ebp-8],eax
6984b9%da 8945fc mov dword ptr [ebp-4],eax
6984b9%dd ££1500000000 call dword ptr ds:[0]
6984b9%e3 cle810 shr eax, 10h

0:000> * //The change looks good. Time to detach and wait for the crash.

0:000> gd

Figure 11: Chrome Crash Setup (continued)

Once Chrome resumed, it immediately crashed as evidenced by the dialog shown in
This resulted in a dump and text file being saved to C:\Program
Files\Google\CrashReports by GoogleCrashHandler.exe. Both files had the same name,
which was a GUID, only distinguished by their respective file extensions. After
GoogleCrashHandler completed its operation, it deleted the text file and renamed to
dump file to Chrome-last.dmp, overwriting any existing Chrome-last.dmp.

Figure 12.

L' Google

Chrome

Google Chrome has stopped working

Windows is checking for a solution to the problem...

Cancel

-

(]

Figure 12: Chrome Crash

17

The dump file was not a complete userdump, however it did contain the crashing stack,
registers, and portions of memory. Unfortunately for the user, in addition to being able to
determine the username, hostname, domain, domain controller, and the fact that the
user was using incognito mode from the process environment block (PEB) (Figure 13), the
dump contained the URL of one of the incognito tabs (Figure 14). Presumably this dump
was uploaded to Google. It was also left on the disk as the Chrome-last.dmp file. The text
file contained mostly unintelligible hex values, though it did indicate that the browser was
running in incognito mode, and listed the Chrome version number.

0:000> !peb
PEB at 7££de000

CommandLine: '"C:\Program Files\Google\Chrome\Application\chrome.exe"
incognito'

Environment: 001481d0
COMPUTERNAME=BROWSERTEST
LOGONSERVER=\\BROWSERTEST
USERDOMAIN=browsertest
USERNAME=testuser

Figure 13: Chrome PEB from dump

"l z6220/|00 00 00/D5 01 0& 0300 00 00 00 00 0o ooloaloo i il &0 00,000 (0001

meG’J’J EE-CICIEEOOZEU’JTT’J’JES’J’JEBGGES]]ue]n].]w]i]k]i
36240||00 70 00|65 00 &4 00 &2|00 61 00 2E 00 &F|00 72 |0 pl el 41|20 al .0|ell c
36250||00|67|00 08| 00|00(00/08|00|00/ 00 03|00(00/ 00 0B\l |g|I 0|00 00|00 |0|0|0|0|0 |0
3&260||00|00 (00 04| 00|00 0007|0000 00| 04|00 00000 |0 (000000000 (00|{0|0|0
3€Z270||00|00|00 08| 00|00 0009|0000 00|/ 04(00 000008 |0 (00 (00|00 0{0 000|000
3€2Z80||00 /00|00 03 00|00 00 0% 0000 00 05|00 00 Q0 05 0000001 0{0 000D |0
36290||00 00 00|01 00 00 00 &A8|00 02 00 7F 7F 7F|00 FF |00 0 0 0 00|00 0 00|00 %
36ZA0||FF|FF|00 01| 00|00|00|7F|7F|7F 00 FF|FF FF 00 &E||%(% /000|000 (000 %&%0 n
362B0||00 00 00|01 00 00 00 04|10 00 00 00 00 00|00 00 |0 0 0 0 000000 00 0|0|0)0
382C0||00|00|00 AC|02Z|00(00/15/00|00 0000|0000 Q0 OE(|l (0|0 |=0 0000000000 |0
362D0 /|00 00 00/1C 00 00 00 D5|01 OA 0% 00 00 00|00 00 |0 01 0|00 |60 00 00(0
382ZE0||00|00|00 00| 00(00|00|2F|00|77 00|/ 69|00 &8 00|&2 |0 (0000|000 w0 1|0 k1|1
362F0||00|2F |00 43 00|6F 00 €3 00| &8 00 61|00 70 00 &F |1 |70 |C0 ol e/l ki allele
36300/|00/6F |00/ 06/ 00/00/00/ 0B/ 0000/ 00 04|00/ 0000/ 070 |0 |00/0/0/0/00/0/0/0.0/0]
3631000 00|00 04 00|00/ 00 0& 00 00 00 09|00 00 0009|000 000 0000100 000

Figure 14: URL in Chrome memory dump

18

Firefox

Firefox could be crashed in much the same was as Chrome. The main thread’s most
recent Mozilla-provided function was unassembled from its return address and the first
call was changed to a null reference (Figure 15). Like Chrome, Firefox has its own crash-
reporting agent, crashreporter.exe, which launched as soon as the process crashed. Their
crash handler wrote a dump and an .extra file to
C:\Users\testuser\AppData\Roaming\Mozilla\Firefox\Crash Reports\pending. Unlike
Chrome’s crash reporting, Mozilla prompts the user for how they would like to proceed
concerning reporting (Figure 16).

0:034> ~0s

eax=00000001 ebx=00000001 ecx=75e2cc37 edx=00000030 esi=75e2634a
edi=00000000

eip=77397094 esp=0024c998 ebp=0024ca54 iopl=0 nv up el pl nz na po
nc

cs=001b ss=0023 ds=0023 es=0023 £s=003b gs=0000
ef1=00200202

ntdll!KiFastSystemCallRet:

77397094 c3 ret

0:000> k

ChildEBP RetAddr

0024c994 75e266c9 ntdll!KiFastSystemCallRet

0024c998 68948f6d USER32!NtUserWaitMessage+0xc

0024cab4 689497d2 xul!nsAppShell::ProcessNextNativeEvent+0x35d

0024ecf8 01351742 xul!XRE main+0x30

0024£7d0 01351a64 firefox!wmain+0x742

0024£814 7700ed6c firefox! tmainCRTStartup+0x122
0024£820 773b377b kernel32!BaseThreadInitThunk+0xe
0024£860 773b374e ntdll! RtlUserThreadStart+0x70
0024£878 00000000 ntdll! RtlUserThreadStart+0xlb
0:000> u 68948f6d

xul !'nsAppShell: :ProcessNextNativeEvent+0x35d:

68948f6d 84db test bl,bl

68948f6f 0f85dbfcffff Jne (68948c50)

68948f75 e997fdffff Jmp (68948d11)

68948f7a 8b4c2418 mov ecx,dword ptr [esp+18h]
68948f7e 8bll mov edx, dword ptr [ecx]
68948f80 8b4234 mov eax,dword ptr [edx+34h]
68948f83 ffdO call eax

68948£85 8a44240e mov al,byte ptr [esp+0Eh]

0:000> eb 68948£83
68948£83 ff ff

ff

68948£84 d0 15

15

68948£85 8a 00

00

68948£86 44 00

00

Figure 15: Firefox Crash Setup

19

68948£87 24 00

00

68948£88 0e 00

00

68948£89 5f

0:000> u 68948f6d

xul!'nsAppShell: :ProcessNextNativeEvent+0x35d:

68948f6d 84db test bl,bl

68948f6f 0f85dbfcffff jne (68948c50)

68948f75 e997fdffff jmp (68948d11)

68948f7a 8b4c2418 mov ecx,dword ptr [esp+18h]
68948f7e 8bll mov edx,dword ptr [ecx]
68948£f80 8b4234 mov eax,dword ptr [edx+34h]
68948f83 ££1500000000 call dword ptr ds:[0]
68948£89 5f pop edi

0:000> gd

Figure 15: Firefox Crash Setup (continued)

kil Mozilla Crash Reporter @

We're Sorry

Firefox had a problem and crashed. We'll try to restore your tabs and
windows when it restarts.

To help us diagnose and fix the problem, you can send us a crash report.

Tell Mozilla about this crash so they can fix it

Add a comment (comments are publichy visible) -

Indude the address of the page I was on
[] allow Mozilla to contact me about this report

Erter your email address hers

Your crash report will be submitted before you quit or restart.

Restart Firefox] [Quit Firefox

Figure 16: Mozilla Crash Reporting

Reviewing the data that Firefox would submit if the user left “Tell Mozilla about this
crash...” checked (default), the .extra file was found to contain the time of the crash,

20

Firefox version, crashing page URL, and report server URL, as well as Winsock version
information. Presumably if the user unchecked the include page address option, the
crashing page URL would be removed.

The dump was in some ways better at protecting information than Chrome. For example,
it did not contain a PEB, which means the dump excluded environment variables like
machine name and username. The dump did contain one of the tab’s URL (Figure 17), as
well as a path to the user’s profile, which contained the username (Figure 18).
Presumably, the crash reporter process does not scrub the dump for any residual sensitive
strings before submitting the report, regardless of the include address checkbox setting.

-

XVI32 - bbd2f5b4-741c-494a-b328-7522d89643d 2.dmp |. =NEe é

File Edit Search Address Bookmarks Tools XMscnipt Help

DR X % BEQeE &8
S0B0 | |00/ 00| 00|00(00 ZB|01|03 5D 03|68 74|74|70 32 2F||0 (0 (0|0 |0 |+/0/0 |1 h::p':‘ﬂ
S0CO||ZF|(T7 |77 |77 |2E|6e2 |75 |7Z|T2Z|6F| 75|67 |68 |2E|eF |72 ||/ |w|w|w|. |b|lu|z|z|o|u|g|h o|lE
9000 || a7 | 2F|50|el|e7|e5 |73 2F|69 | cE &4 65|78 |2E | el |73 |g|/|Bla|/g|le|s|/|inde|x ES_I

ELE (70 72 B8 00 0000 00 00|00 00 00 0000 00 0000 [x@E1 TTn 0T jn D]
S0F0 (00 00 00|00|00 00 0000 00 00 00 0000|000 0000|000 0|0 000 0|00 D/0/0/00
9100 (00 00 00 00|00|00 00 00 00 00|00 00 00 00 00|00 (0000000000000 0{0 10
5110 (00 00 00|00|00 00 0000 00 00 00 0000|000 0000|000 0|0 00000000000
89120 CICI':I':I'J'J':ICIO'JCICIDDUUUUGGUUGGUUOOUUDD]]]]]]]]]]]]]]]]j

Adr, dec: 37,090 Chardec: |Insert

Figure 17: Firefox Dump Leaked URL

E

¥V132 - bbd2f5b4-T41c-494a-b328-7522d89643d 2.dmp

File Edit Search Address Bookmarks Tools XMscript Help
T i .y i+
DEE X § BEQEGE &8
EUU 7200|7300 5C|00|74 00|e5 0072|0074 00 E] r|l |a|l [0 [t|] ||l |=(0
TCED | |75 00| 73|00|&5 00|72 |00 5C|00/41 00(70(00 70|00||u/l |s(l|e|l |l |0 |&|] | p0
JCF0 | |44 00 &1|00|74 /00|61 |00 5C|00/4C 00|6F|00 &3/ 00(|D/0 |all |t a0 |0 L] | al
D00 |&1 00 &C 00|5C|00 4D 00 &F|00|7A 00 &9 00 &C|00 (a0 (20 (%0 M0 |l =040
7010 |&C 00 &1|00|5C 00|46 |00 &9 00|7Z 00|65|(00 &8/ 00| |10 |a(l |1 |F|0|i[l |0 el
7020 |&€F 00 78 00|5C|00 50 00 72 00|&F 00 && 00 &3(00 (ol (=0 %0 B0 =0 £
7030 |&C 00 &5|00|73 00|5C |00 78|00 68 00(30(00 &&/ 00| |10 el |a|] |0 |x(0 w0 o0

|

o
=
1
Heoom = n g
= E e === ==

=,

7D40||7A|(00|73 00| 65|00 €7 00|2E|00 &4 00|65/ 0000 /00(|=(0 s|0 el gl .0|dl|el

Adr, dec: 31,952 Char dec: 101 |Insert

L

Figure 18: Firefox Dump Leaked Username

21

Internet Explorer

Using the same call pointer nullification method as in the previous browsers, IE crashed
and was automatically restarted by werfault.exe, the Windows Error Reporting program
(Figure 19). Because the first code unassembled in IE did not contain a call, an existing
compare instruction was intentionally replaced with a null call (Figure 20).

rd =

' Internet Explorer @

Internet Explorer is restarting...

Cancel

Figure 19: IE Crash Auto-Restart

It should be noted that when IE automatically restarted, it started out of InPrivate mode
and did not recall any of the previously open sites, which is a good design in terms of
protecting user privacy. Additionally, WER fault did not collect or upload a dump file
during testing. Instead, it first created an XML file at
C:\Users\testuser\AppData\Local\Temp\WERDSEC.tmp.WERInternalMetadata.xml, which
was deleted as soon as WER finished. WERFault.exe then generated a Report.wer file at
C:\Users\testuser\AppData\Local\Microsoft\Windows\WER\ReportArchive\AppCrash_iex
plore.exe_e5177260de2b2649acbc1073ca731d7f07aa98a_05321e81\Report.wer. This
file contained the crashing module, offset, and version information, as well as the loaded
module names from the IE process, as well as a few error message strings. It did not
contain any identifying information about the user or their browsing session. A copy of
the report can be seen in Figure 21 (loaded module list omitted for brevity).

22

0:011> ~O

S

€ax=000000c0 ebx=00000113 ecx=7££d4000 edx=00000030 esi=00000002 edi=00ldedac

eip=77457094 esp=001ded60 ebp=001ded480 iopl=0

cs=001b

77457094
0:000> k
ChildEBP
001ded5c

001de864
001de8b8
001de8dc
001dfd38

001dfe30
0:000> u

ss=0023

c3

RetAddr
75a24473

75a262£9
6£8d2006
6£8d239f
00e81226

00000000
6£8d2006

nv up ei ng nz ac pe cy

ds=0023 es=0023 fs=003b gs=0000 ef1=00000297
ntdll!KiFastSystemCallRet:

ret

ntdll!KiFastSystemCallRet

kernel32!WaitForMultipleObjectsExImplementation+0xe0
USER32!RealMsgWaitForMultipleObjectsEx+0x13c
IEUI!CoreSC: :Wait+0x50

iexplore!wWinMain+0x391

ntdll! RtlUserThreadStart+0xlb

L3

IEUI!CoreSC::Wait+0x50:
6£8d2006 3dc0000000 cmp

6£8d200b
6£8d200d

0:000> eb 6£8d2006

6£8d2006
ff
6£8d2007
15
6£8d2008
00
6£8d2009
00
6£8d200a
00
6£8d200b
00
6£8d200c
0:000> u

T4e’
5f

3d ff

c0 15

00 00

00 00

00 00

74 00

e’
6£8d2006

Jje
pop

L3

IEUI!CoreSC: :Wait+0x50:
6£8d2006 ££1500000000 call

6£8d200c
6£8d200e
0:000> gd

e75f
3bco

out
cmp

eax, 0COh
IEUI!CoreSC::Wait+0x3e (6f8dl1ff4)
edi

dword ptr ds:[0]
5Fh, eax
eax,esi

Figure 20: IE Crash Setup

23

Version=1

EventType=APPCRASH
EventTime=129982065798324231

ReportType=2

Consent=1

UploadTime=129982065801917981
Reportldentifier=48701bee-35f3-11e2-9ffd-0800275e6093
IntegratorReportldentifier=48701bed-35f3-11e2-9ffd-0800275e6093
Response.Bucketld=3168233462
Response.BucketTable=1

Response.type=4

Sig[0].Name=Application Name
Sig[0].Value=iexplore.exe

Sig[1].Name=Application Version
Sig[1].Value=9.0.8112.16450
Sig[2].Name=Application Timestamp
Sig[2].Value=503723f6

Sig[3].Name=Fault Module Name
Sig[3].Value=IEUL.dII

Sig[4].Name=Fault Module Version
Sig[4].Value=9.0.8112.16450

Sig[5].Name=Fault Module Timestamp
Sig[5].Value=503721ca

Sig[6].Name=Exception Code

Sig[6].Value=c0000005

Sig[7].Name=Exception Offset

Sig[7].Value=00002006

DynamicSig[1].Name=0S Version
DynamicSig[1].Value=6.1.7601.2.1.0.768.2
DynamicSig[2].Name=Locale ID
DynamicSig[2].Value=1033
DynamicSig[22].Name=Additional Information 1
DynamicSig[22].Value=0a9e
DynamicSig[23].Name=Additional Information 2
DynamicSig[23].Value=0a9e372d3b4ad19135b953a78882e789
DynamicSig[24].Name=Additional Information 3
DynamicSig[24].Value=0a9e
DynamicSig[25].Name=Additional Information 4
DynamicSig[25].Value=0a9e372d3b4ad19135b953a78882e789
UI[2]=C:\Program Files\Internet Explorer\iexplore.exe
Ul[3]=Internet Explorer has stopped working

Ul[4]=Windows can check online for a solution to the problem and try to restart the program.

UI[5]=Check online for a solution and restart the program
UlI[6]=Check online for a solution later and close the program
Ul[7]=Close the program

LoadedModule[0]=C:\Program Files\Internet Explorer\iexplore.exe

ConsentKey=APPCRASH
AppName=Internet Explorer
AppPath=C:\Program Files\Internet Explorer\iexplore.exe

Figure 21: WER Report

24

Opera

Again, the same method to induce a crash in the other browsers was used here (Figure
22). One interesting feature of Opera is it appears to handle its crashes by attaching
another instance of Opera to the crashing instance instead of using a separate crash
reporting utility. This new process not only handles the crash, but also prompts the user if
they want to restore their session. Like IE, it a restored session does not include private
browsing tabs.

When Opera crashed, an approximately 1.2 MB crash.txt file was written to
C:\Users\testuser\AppData\Local\Temp\opera-20121124005901. It contained mostly
sections of stack memory from Opera, including things like environment variables,
revealing the username and domain of the user (Figure 24). No URLs or page contents
from the session were observed in the file. Opera did not present any options or ask the
user if information about the crash could be uploaded.

0:011> ~0s

0:000> k

ChildEBP RetAddr

0014e6e0 76e8cdel ntdll!KiFastSystemCallRet

0014e6ed4 76e8cell3 USER32!NtUserGetMessaget0xc

0014e700 6ae090af USER32!GetMessageW+0x33

WARNING: Stack unwind information not available. Following frames may be wrong.
0014e774 6afbf4bb Opera 6ac40000!0OpSetLaunchMan+0xlc7el9

0:000> u 6ae090af L3
Opera 6ac40000!0OpSetLaunchMan+0xlc7el19:

6ae090af 85c0 test eax,eax
6ae090bl O0f8529ffffff Jne Opera 6ac40000!0OpSetLaunchMan+0xlc7d4a (6ae08fe0)
6ae090b7 5f pop edi

0:000> eb 6ae090bl
6ae090bl1 0f ff

ff

6ae090b2 85 15

15

6ae090b3 29 00

00

6ae090b4 ££f 00

00

6ae090b5 ££f 00

00

6ae090b6 f££f 00

00

6ae090b7 5f

0:000> u 6ae090af L3
Opera 6ac40000!0OpSetLaunchMan+0xlc7e19:

6ae090af 85c0 test eax, eax
6ae090b1l ££1500000000 call dword ptr ds: [0]
6ae090b7 5f pop edi

0:000> gd

Figure 22: Opera Crash Setup

25

Welcome to Opera @

O Welcome to Opera

@ Continue from last time

Continue saved sessions

~ Start with home page
~ Start with Speed Dial
Start extensions

Start] [Cancel

Figure 23: Opera Restart

OPERA-CRASHLOG V1 desktop 12.02 1578 windows
Opera.exe 1578 caused exception C0000005 at address 67C190B1 (Base: C80000)

Registers:

EAX=00000001 EBX=76E8CDES8 ECX=0000042C EDX=77BD7094 ESI=02109FB8
EDI=0210A044 EBP=0016E634 ESP=0016E5DS8 EIP=67C190B1 FLAGS=00010202
CS=001B DS=0023 55=0023 ES=0023 FS=003B GS=0000

FPU stack:

00000000000000000000 00000000000000000000 00000000000000000000
00000000000000000000 00000000000000000000 00000000000000000000
00000000000000000000 00000000000000000000 SW=0127 CW=027F

Stack dump:
0016E5D8 7773E868 00000400 00000000 O0016FC24 hesw....... $i.
0016E5E8 7265704F 614D2061 ©57206E69 00646E69 Opera Main Wind.

00210FBO 55 00 53 00 45 00 52 00 44 00 4°r 00 4D 00 41 00

U.S.E.R.D.O.
00210FCO 49 00 4E 00 3D 00 62 00 72 00 6F 00 77 00 73 00 I.N.=.b.r.o.
00210FDO 65 00 72 00 74 00 65 00 73 00 74 00 00 00 55 00 e.r.t.e.s.t.
00210FEO0 53 00 45 00 52 00 4 00 41 00 4D 00 45 00 3D 00 S.E.R.N.A.M.
00210FFO 74 00 65 00 73 00 74 00 75 00 73 00 65 00 72 00 t.e.s.t.u.s.

Tan

-

Figure 24: Opera crash log

26

Safari

Unlike Chrome and Firefox, which have their own out of process crash handlers or Opera
with its self-contained handler, Safari does not provide its own crash reporting
mechanism. After inducing the crash (Figure 25), Windows Error Reporting captured the
crash (Figure 26) and uploaded a report to the Windows Error Reporting site. Apple can
later access these reports if they have registered as an ISV (Microsoft, 2012). The WER
Report did not contain any sensitive information — only the module, version information,
and exception record (Figure 27; loaded module information omitted for brevity).

0:026> ~0s

0:000> k

ChildEBP RetAddr

0030£508 7602cdel0 ntdll!KiFastSystemCallRet
0030£50c 7602cel3 USER32!NtUserGetMessage+0xc
0030£528 6a7af4de USER32!GetMessageW+0x33
WARNING: Stack unwind information not available. Following frames may be wrong.
00000000 00000000 safari 6a750000+0x5f4de

0:000> u 6a7afd4de L2

Safari 6a750000+0x5f4de:

ba7afdde 83f8ff cmp eax, OFFFFFFEFFh
ba7afdel T4ba je Safari 6a750000+0x5£49d (6a7af49d)
0:000> eb 6a7afdde

ba7afdde 83 ff

ff

6a7af4df £8 15

15

ba7af4e0 f£f 00

00

ba7afdel 74 00

00

ba7afde2 ba 00

00

ba7af4e3 85 00

00

ba7afded cO

0:000> u 6a7af4dde L2

Safari 6a750000+0x5f4de:

ca7afdde ££1500000000 call dword ptr ds: [0]
ba7afded c074548b07 sal byte ptr [espt+edx*2-75h],7
0:000> gd

Figure 25: Safari Crash Setup

27

B Safari 22
Safari has stopped working

A problemn caused the program to stop working correctly,
Windows will close the program and notify you if a sclution is
available.

[Close program

Figure 26: WER Dialog for Safari

Version=1

EventType=APPCRASH
EventTime=129982488858088750
ReportType=2

Consent=1

UploadTime=129982488859963750
Reportldentifier=c8e9f6b5-3655-11e2-9f71-0800275e6093
IntegratorReportldentifier=c8e9f6b4-3655-11e2-9f71-0800275e6093
Response.Bucketld=3272016251
Response.BucketTable=1

Response.type=4

Sig[0].Name=Application Name
Sig[0].Value=Safari.exe
Sig[1].Name=Application Version
Sig[1].Value=5.34.57.2

Sig[2].Name=Application Timestamp
Sig[2].Value=4f982b5e

Sig[3].Name=Fault Module Name
Sig[3].Value=Safari.dll

Sig[4].Name=Fault Module Version
Sig[4].Value=7534.57.2.4

Sig[5].Name=Fault Module Timestamp
Sig[5].Value=4f982b22

Sig[6].Name=Exception Code
Sig[6].Value=c0000005

Sig[7].Name=Exception Offset
Sig[7].Value=0005f4de
DynamicSig[1].Name=0S Version
DynamicSig[1].Value=6.1.7601.2.1.0.768.2
DynamicSig[2].Name=Locale ID
DynamicSig[2].Value=1033
DynamicSig[22].Name=Additional Information 1
DynamicSig[22].Value=0a9e
DynamicSig[23].Name=Additional Information 2

Figure 27: WER Report for Safari

28

DynamicSig[23].Value=0a9e372d3b4ad19135b953a78882e789
DynamicSig[24].Name=Additional Information 3
DynamicSig[24].Value=0a9e

DynamicSig[25].Name=Additional Information 4
DynamicSig[25].Value=0a9e372d3b4ad19135b953a78882e789
UI[2]=C:\Program Files\Safari\Safari.exe

3]=Safari has stopped working

4]=Windows can check online for a solution to the problem.
5]=Check online for a solution and close the program
6]=Check online for a solution later and close the program
Ul[7]=Close the program

LoadedModule[0]=C:\Program Files\Safari\Safari.exe

uI[
Ul
uI[
uI[

State[0].Key=Transport.DoneStagel

State[0].Value=1

State[1].Key=DataRequest
State[1].Value=Bucket=-1022951045/nBucketTable=1/nResponse=1/n
FriendlyEventName=Stopped working

ConsentKey=APPCRASH

AppName=Safari

AppPath=C:\Program Files\Safari\Safari.exe

Figure 27: WER Report for Safari (continued)

Upon restarting Safari, it did not provide any indication that it had crashed. A new, empty,
normal session was created.

Test 4: Crashing Plug-In

Another possible attack vector for browser privacy modes is to leverage an extension that
intentionally crashes in the hopes of crashing the browser. As in test three, this could
result in a memory dump being saved to disk or uploaded to a crash submission site. This
memory dump could contain sensitive user information.

Chrome

As described in test 2, Chrome’s extension architecture consists of package
JavaScript/JSON/HTML files. Given that no native code is running in the extension, it
seems the only way an extension could cause a crash would be if it found and exposed a
bug in Chrome itself. This has occurred, such as the one documented at (Dunn, 2011),
however that bug has since been fixed. Attempting to find a bug in Chrome’s API is
outside the scope of this paper, so this test was not attempted on Chrome.

29

Chrome does support NPAPI plugins (see Firefox section of this test for a description and
more information); however, Chrome places additional restrictions on these plugins, so
this is a less-likely attack vector on Chrome than on Firefox (Google, 2012).

Firefox

One of the aspects of Firefox that makes it so extensible is the variety of add-ons it
accepts. In addition to the script-based extensions as was used in test 2, Firefox can also
run native plugins built with the Gecko SDK. This includes native C++ code written using
the Netscape Plugln Application Programming Interface (NPAPI). While other browsers
offer differing levels of support for NPAPI plugins, Mozilla fully supports them, due to its
ties to Netscape.

Firefox also uses a novel plugin-container process to host native plugins outside the main
Firefox process. This prevents a single native plugin’s crash from disrupting the user’s
browser session. There are two problems with this approach, as it relates to protecting a
user’s privacy in crash reporting. First, Mozilla may collect the URL of the page being
visited when a plugin crashes (Verdi, 2010). Second, Firefox may only silos select plugins
into external processes, not all of them (Wyman, 2010).

To test Firefox using a crashing plugin, the NPAPI sample code served as the basis for a
native Firefox plugin (Mozilla, 2007). Once loaded into the browser, the Firefox did create
a plugin-container process for the plugin. Upon triggering the crash, Firefox offered to
send a crash report to Mozilla (Figure 28).

@ The npapitest plugin has crashed. Learn More... | Reload page | ‘ Submit a crash report | x

Figure 28: Firefox Crash Report Prompt

A process monitor log revealed that when a crash occurs, Firefox stores a usermode
process minidump and an .extra file in %APPDATA%\Mozilla\Firefox\Crash
Reports\pending\. These files are left even if the user dismisses the send crash report
dialog.

In reviewing a dump and .extra file taken when the test NPAPI plugin crashed while loaded
in private browsing mode, it appears that no discernible user information is present. At
the time of the crash, two tabs were loaded — one on yahoo.com and the other on the
NPAPI text page bundled with the sample code that exposes the plugin’s functionality.
The .extra file was a plain-text document containing the URL of the crash report, the
Winsock version, the Firefox version, several timestamps, and the name of the crashing
plugin (Figure 29). The dump file was not a complete user mode memory dump, and only
contained stacks, registers, and small portions of memory. Searching the dump with both
a debugger and a hex editor, it contained no trace of either page URL, or any of the pages’
content or markup.

30

Winsock_LSP=MSAFD Tcpip [TCP/IP] : 2:1: \n MSAFD Tcpip [UDP/IP]:2:2:
%SystemRoot%\\system32\\mswsock.dll \n MSAFD Tcpip [RAW/IP] : 2 : 3: \n MSAFD Tcpip [TCP/IPv6] :
2 :1: %SystemRoot%\\system32\\mswsock.dll \n MSAFD Tcpip [UDP/IPv6] : 2 : 2 : \n MSAFD Tcpip
[RAW/IPV6] : 2 : 3 : %SystemRoot%\\system32\\mswsock.dll \n RSVP TCPv6 Service Provider:2:1: \n
RSVP TCP Service Provider : 2 : 1 : %SystemRoot%\\system32\\mswsock.dll \n RSVP UDPv6 Service
Provider : 2 : 2 : \n RSVP UDP Service Provider : 2 : 2 : %SystemRoot%\\system32\\mswsock.dll
AdapterVendorID=0x10de

EMCheckCompatibility=true

ProductName=Firefox

Vendor=Mozilla

InstallTime=1352338926

Theme=classic/1.0

Notes=AdapterVendorID: 0x10de, AdapterDevicelD: 0x0e23, AdapterSubsysID: 13663842,
AdapterDriverVersion: 9.18.13.697\nD2D? D2D+ DWrite? DWrite+ D3D10 Layers? D3D10 Layers+
Version=16.0.2

ReleaseChannel=release
ServerURL=https://crash-reports.mozilla.com/submit?id={ec8030f7-c20a-464f-9b0e-
13a3a9e97384}&version=16.0.2&buildid=20121024073032

AdapterDevicelD=0x0e23

Add-ons={972ce4c6-7e08-4474-a285-3208198cebfd}:16.0.2

BuildID=20121024073032

ProductlD={ec8030f7-c20a-464f-9b0e-13a3a9e97384}

CrashTime=1353508819

StartupTime=1353508768

ProcessType=plugin

PluginVersion=

PluginName=

PluginFilename=npapitest.dll

Figure 29: Firefox .extra file

This is reassuring, since anyone is able to lookup information from any crash on Mozilla’s
crash reporting site at https://crash-stats.mozilla.com/. The site even allows people to
filter by plugin name, so an attacker could reveal just the information from their plugin.

Internet Explorer

Internet Explorer loads extensions into its own process, which means a crashing extension
will also crash the browser. IE does launch multiple processes depending on the number
of tabs in use, and can recover if one of its instances crashes (Zeigler, 2008). However,
this still means that it is possible that a crashing extension could result in private
information being saved in a crash dump and potentially uploaded to Microsoft’s
Windows Error Reporting (WER) servers.

31

https://crash-stats.mozilla.com/

To test Internet Explorer’s handling of extension crashes, a slight modification was made
to the IE Extension used in test 2. In the function that is called when a page completes
loading, a test was added to check if the loaded URL contains “yale.edu”. If it does, the
extension calls Debugger.Break(). If a debugger is not attached, the process will crash.

Reviewing the data collected by Windows Error Reporting, it appears that only a text file
containing the crash reason and loaded modules was submitted (Figure 30). While WER
does have the ability to collect process mini-dumps, triggering this particular crash did not
lead to a submission. It is possible other classes of crashes could result in a dump being
upload, though that was not observed in testing.

It should also be noted that Microsoft’s System Center Desktop Error Monitoring product
allows IT administrators to collect crash information from their machines, so in a
corporate environment it is possible an IT administrator would receive crash dumps in this
situation (Vel, 2008). Even without System Center, an administrator can still configure
WER to save crash dumps (Microsoft Corporation, 2012).

Version=1

EventType=CLR20r3
EventTime=129978175308259746
ReportType=2

Consent=1
UploadTime=129978175352039043
Reportldentifier=7540b50d-3269-11e2-a5ab-0800275e6093
IntegratorReportldentifier=7540b50c-3269-11e2-a5ab-0800275e6093
Response.Bucketld=50
Response.BucketTable=5
Response.type=4
Sig[0].Name=Problem Signature 01
Sig[0].Value=iexplore.exe
Sig[1].Name=Problem Signature 02
Sig[1].Value=9.0.8112.16455
Sig[2].Name=Problem Signature 03
Sig[2].Value=507284ba
Sig[3].Name=Problem Signature 04
Sig[3].Value=IEAddOn
Sig[4].Name=Problem Signature 05
Sig[4].Value=1.0.0.0
Sig[5].Name=Problem Signature 06
Sig[5].Value=50a939d5
Sig[6].Name=Problem Signature 07
Sig[6].Value=4
Sig[7].Name=Problem Signature 08

Figure 30: WER Report from IE Extension Crash

32

Sig[7].Value=4f

Sig[8].Name=Problem Signature 09
Sig[8].Value=Debugger.Break

DynamicSig[1].Name=0S Version
DynamicSig[1].Value=6.1.7601.2.1.0.768.2
DynamicSig[2].Name=Locale ID

DynamicSig[2].Value=1033

DynamicSig[22].Name=Additional Information 1
DynamicSig[22].Value=301c
DynamicSig[23].Name=Additional Information 2
DynamicSig[23].Value=301cf6e2b3f77c41ce76c3c05aac9deb
DynamicSig[24].Name=Additional Information 3
DynamicSig[24].Value=4330
DynamicSig[25].Name=Additional Information 4
DynamicSig[25].Value=4330a527e81099ec1a054fe374ced8bf
UlI[2]=C:\Program Files\Internet Explorer\iexplore.exe
Ul[3]=Internet Explorer has stopped working

UI[4]=Windows can check online for a solution to the problem.
UI[5]=Check online for a solution and close the program
UlI[6]=Check online for a solution later and close the program
Ul[7]=Close the program

LoadedModule[0]=C:\Program Files\Internet Explorer\iexplore.exe

LoadedModule[104]=C:\Windows\system32\FaultRep.dll
State[0].Key=Transport.DoneStagel

State[0].Value=1

State[1].Key=DataRequest
State[1].Value=Bucket=50/nBucketTable=5/nResponse=1/n
FriendlyEventName=Stopped working
ConsentKey=CLR20r3

AppName=Internet Explorer

AppPath=C:\Program Files\Internet Explorer\iexplore.exe

Figure 30: WER Report from IE Extension Crash (Continued)

Opera

Like with Chrome, Opera’s extensions generally utilize Opera’s JavaScript architecture,
which makes the browser more crash resistant to misbehaving plug-ins. Without finding a
flaw in Opera’s JavaScript processing engine or APIs, it is unlikely to cause a browser crash
from an extension.

Opera also supports NPAPI plugins, though in testing Opera did not pick up a NPAPI plug-

in installed on the system. Additionally, Opera’s NPAPI documentation implies that some
security boundaries are enforced for NPAPI plugins (Opera Software, 2008), and that

33

Opera is working on an Out-of-Process plugin model that may help protect user
information in the event of a crash (Mills, 2012).

Safari

This test was skipped on Safari, as Apple requires developers to sign an explicit agreement
that states that they will not produce extensions that intentionally interfere with the
operation of Safari. The other browsers tested in this section did not have a formal EULA
and registration process required to develop an extension.

Again, it should be noted that Safari’s extension platform appears to be JavaScript-based
like Chrome. As such, it is likely that a misbehaving extension would probably not result in
a browser crash. This has not been tested in the course of this paper, however.

Test 5: Abandoned Browser Reconnaissance

A final possible attack surface is an abandoned browser. This scenario could easily occur
in a library or web café setting. Consider a user browsing in private mode who
subsequently closes any tabs containing sensitive sites, but fails to close the browser
before stepping away.

A complete memory dump of the process will be created using Task Manager’s “Create
Dump File” option in the processes tab. This dump file could easily be copied to a thumb
drive and examined later by an attacker. In this test, the dump will be searched for
references to URLs and page content from the victim’s sensitive sites.

Chrome

For this test, Chrome was started directly in Incognito mode via its jump list from its
pinned taskbar icon. From the start page, two new tabs were created, yielding three tabs
all in Incognito mode. The first tab was left blank while the second tab was navigated to
burrough.org and the third tab to wikipedia.org/wiki/cockapoo. Once both pages
completed loading, both tabs were closed. After about 30 seconds, Task Manager was
used to create a dump file of the main Chrome process (Figure 31). Once completed, the
dump was saved to C:\Users\testuser\AppData\Local\Temp\chrome.DMP. It was 135
MB.

The dump was then copied off the VM and run against strings.exe (Russinovich, 2012) on a

different machine with these parameters: “strings.exe -n 10 chrome.dmp > chrome-
strings.txt”, which found all Unicode and ASCII strings 10 or more characters in length and

34

saved them to a text file, which was 17.8 MB. Grep was then used to find any lines that
contained burrough or cockapoo (case insensitive).

"% Windows Task Manager
File Options View Help

Applications | Processes |5ervices IPerformance INetworkjng IUsers |

Image I‘Eame User Mame CPU Memory (... Command Line
audiodg.exe LOCAL ... a0 9,588 K
chrome.exe testuser Jala] 19,308 K "C:\Program Files\Google\Chrome\Applicatinn\rhrame exe”™ ——incnanitn
chrome.exe testuser 0o 7, 104K "C:\Program Files\Google\ChromeiApplic Open File Location iq
CSrss.exXe SYSTEM oo 1,208 K %SystemRoot%\system32\csras.exe Of
CErss,exe SYSTEM a0 960 K %eSystemRoot3c'system32\csrss.exe OF End Process
dwm.exe testuser Jala] 984K "C:\Windows\system32\Dwm.exe” End Process Tree
explorer.exe testuser oo 9, 720K C:\Windows\Explorer.EXE Debug
GoogleCrashH... SYSTEM oo 492K "C:\Program Files\Google\Update1.3.21 . o
lsass.exe SYSTEM a0 2,600 K C:\Windows\system32Ysass. exe I s e dan
lsm.exe SYSTEM Jala] 884K C:\Windows\system32Ysm.exe Create Dump File
MsMpEng.exe SYSTEM oo 44,656 K “c)\Program Files\Microsoft Security Clien o
MSSECES, EXE testuser oo 3,172 K "C:\Program Files\Microsoft Security Clie Set Priority 5
MisSrv. exe LOCAL ... oo 5,572 K "c:\Program Files\Microsoft Security Clien Set Affinity...
SearchIndexe... SYSTEM Jala] 2,408 K C:\Windows\system32\SearchIndexer.e
- o Properties

Show processes from all users Go to Service(s)

Processes: 43 CPU Usage: 1% Physical Memory: 33%

Figure 31: Dumping Chrome via Task Manager

The dump contained 104 strings of 10 or more characters with burrough in them and 162
strings containing cockapoo. Figure 32 and Figure 33 contain a sampling of the strings
found. An additional search for the Word Rochester (page contents from Burrough.org
contain the author’s CV, including Rochester Institute of Technology where he completed
his undergraduate degree), found seven hits:

grep -U -i Rochester chrome-strings.txt

Rochester, NY

Rochester Institute of Technology, Rochester, NY

Rochester Institute of Technology, Rochester, NY

Rochester Institute of Technology, Rochester, NY

Nathaniel Rochester Society Scholar, Rochester Institute of Technology, 2005

Presidential Scholar, Rochester Institute of Technology, 2003

rochester.museum

35

Matthew Burrough's CV - Google Chrome
http://www.burrough.org/pages/index.aspx
http://www.burrough.org/Sitelmages/mcitp.png
burrough.org

Figure 32: Sample of Burrough Strings in Chrome

Cockapoo - Wikipedia, the free encyclopedia - Google Chrome

http://wikipedia.org/wiki/cockapoo

A Cockapoo is a cross breed dog. It is the cross of an American Cocker Spaniel or English Cocker Spaniel
and a poodle (in most cases a miniature poodle or toy poodle), or of two cockapoos.

Cockapoos are often active and agile.

A "Cockapoo Coat Colors". Cockapoo Club of GB. Retrieved 2012-03-09.

Figure 33: Sample of Cockapoo Strings in Chrome

Firefox

Firefox was started in normal mode, and then immediacy placed into private browsing
mode from the Firefox menu. As with Chrome, two tabs were opened in addition to the
first blank tab, and these tabs were navigated to burrough.org and
Wikipedia.org/wiki/cockapoo. Once loaded, these two tabs were closed. After 30
seconds, the firefox.exe process was dumped with Task Manager. The 140 MB dump was
run through strings.exe on a different machine, and looking for strings ten characters long
or longer.

The resulting strings output was 10 MB. It included 111 lines containing Burrough, 455
lines containing Cockapoo, and 13 lines containing Rochester. Reviewing the text, it was
interesting to see that although each of these keywords had more hits than Chrome, there
were many more repeats of the same strings, and many of the hits were page URLs and
hyperlinks. There was very little page content in the strings. Examples can be seen in
Figure 34, Figure 35 and Figure 36. This illustrates a difference in how Chrome and
Firefox’s memory allocation/deallocation patterns.

Matthew Burrough's CV
http://www.burrough.org/Pages/index.aspx

Matthew Burrough's CV - Mozilla Firefox (Private Browsing)
http://blogs.msdn.com/b/ntdebugging/archive/tags/burrough/
Transferring data from www.burrough.org
http://www.burrough.org/Sitelmages/mcses.png

Figure 34: Sample of Burrough Strings in Firefox

36

http://en.wikipedia.org/wiki/Cockapoo

Cockapoo - Wikipedia, the free encyclopedia - Mozilla Firefox (Private Browsing)

Like many floppy-eared breeds, Cockapoos can be subject to ear infections, and it's important
to keep their ears clean and dry.

kwww.americancockapooclub.com

kwww.cockapoo-owners-club.org.uk

/w/index.php?title=Cockapoo&action=history

Figure 35: Sample of Cockapoo Strings in Firefox

Rochester

Rochester

Rochester

Nathaniel Rochester Society Scholar, Rochester Institute of Technology, 2005
Rochester,1

Rochester

, Rochester, NY

, Rochester, NY

, Rochester, NY

, Rochester, NY

Rochester
Institute of Technology, Rochester, NY</p>
rochester.museum

Figure 36: All Rochester Strings in Firefox

Internet Explorer

Internet Explorer was also started directly into InPrivate mode via its jump list. After two
tabs had been created and fully loaded the Burrough.org and Wikipedia Cockapoo pages,
they were closed and a dump was created of the main iexplore.exe process 30 seconds

later. The dump was 99 MB, and yielded 9.8 MB of 10+ character strings.

Reviewing the grepped outputs for Burrough, Cockapoo, and Rochester, there were 80
hits for Burrough, 79 for Cockapoo, and none for Rochester. Possibly due to IE’s spate-
process-per-tab architecture, there were no strings for any of the page content from
either burrough.org or Wikipedia.org/wiki/cockapoo. All of the strings were URLs, links, or

the page title/title bar text. Samples are in Figure 37 and Figure 38.

Matthew Burrough's CV - Windows Internet Explorer - [InPrivate]
http://www.burrough.org/Pages/index.aspx

burrough.org

www.burrough.org

http://www.burrough.org/favicon.ico

Figure 37: Sample of Burrough Strings in IE

37

http://wikipedia.org/wiki/cockapoo

Cockapoo - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Cockapoo

Cockapoo - Wikipedia, the free encyclopedia - Windows Internet Explorer - [InPrivate]
ttp://en.wikipedia.org/w/index.php?title=Special:UserLogin&returnto=Cockapoo&type=signup

Figure 38: Sample of Cockapoo Strings in IE

Opera

Since Opera is unique in that its tabs — and not the window or process — are either in
private or normal mode, it was launched normally, followed by the creation of two private
tabs. Once the Burrough and Wikipedia pages loaded in those tabs, they were closed,
leaving just the normal mode blank tab. After 30 seconds, a 133 MB dump of opera.exe
was created with Task Manager. 10 MB of strings were then saved using strings.exe as in

the other browser’s tests in this section.

Of the strings, 39 contained Burrough, 210 cockapoo, and 6 Rochester. Samples are in
Figure 39, Figure 40, and Figure 41. The strings contained a mix of URLs and page

contents.

Address: http://www.burrough.org/Pages/index.aspx
www.burrough.org

burrough.org

Completed request to www.burrough.org

atthew Burrough's CV
http://blogs.msdn.com/b/ntdebugging/archive/tags/burrough/

Figure 39: Sample of Burrough Strings in Opera

/w/index.php?title=Cockapoo&action=history

tp://en.wikipedia.org/wiki/cockapoo

A healthy 12-week-old cockapoo.

of toy poodles, miniature poodles, cocker spaniels and cockapoos, using AKC standards and
other information.

Characteristics of the Cockapoo"

While some Cockapoos appear more similar to Cocker Spaniels, others will exhibit more Poodle

traits, creating a variation in Cockapoo appearance and temperament.

itle: Cockapoo - Wikipedia, the free encyclopedia

Address: http://en.wikipedia.org/wiki/Cockapoo

Figure 40: Sample of Cockapoo Strings in Opera

38

Rochester, NY

Rochester, NY

Rochester, NY

Presidential Scholar, Rochester Institute of Technology, 2003

Nathaniel Rochester Society Scholar, Rochester Institute of Technology, 2005
Rochester, NY

Figure 41: All Rochester Strings in Opera

Safari

Safari was launched in normal mode then immediately switched to private browsing
mode. As before, two new tabs were created, navigated to burrough.org and
Wikipedia.org/wiki/cockapoo, and then closed when loading finished. A dump of Safari
was captured using Task Manager when 30 seconds had elapsed with just the blank
original tab open. The 133 MB dump contained 13.5 MB of 10+ character strings. Among
these were 308 Burrough strings, 532 Cockapoo strings, and 8 Rochester strings.

What was interesting about Safari was that, in spite of the large number of strings, none
was for page content. Each was a URL, link, or page title. In fact, the only reason
Rochester appeared at all was Safari seems to pull news RSS feeds automatically for
several sites, and included in these were a few stories about Rochester. None of the
Rochester hits was related to the Burrough.org page.

http://www.burrough.org/Pages/index.aspx
http://burrough.org/
http://www.burrough.org/Sitelmages/SBE-Certified.jpg
www.burrough.org

Matthew Burrough's CV

Figure 42: Sample of Burrough Strings in Safari

http://wikipedia.org/wiki/cockapoo

http://en.wikipedia.org/wiki/Cockapoo

http://upload.wikimedia.org/wikipedia/commons/thumb/2/20/Twelve_%2812%29 Week_Old
Cockapoo.jpg/220px-Twelve%2812%29 Week_Old_Cockapoo.jpg

Cockapoo - Wikipedia, the free encyclopedia

Figure 43: Sample of Cockapoo Strings in Safari

39

Conclusion

Based on the results of the five tests, it is clear that no browser is without flaws when it
comes to information disclosure about private browsing sessions. Generally, browsers
were good about not leaving files from the private session on the disk, but did a poor job
protecting users when tabs were closed but the browser was not. The most varied
behavior came in the form of how browsers handle plugins during private browsing. At
best, the browser provides warnings that plugins may cause data leaks during private
browsing, and allow the plugins to be enabled or disabled individually for privacy mode,
like Chrome and Opera. At worst, they run plugins by default in privacy mode with no
warning, such as with Firefox and Safari. In between is Internet Explorer’s design where
plugins are loaded all-or-nothing in privacy mode.

In terms of crash reporting, the best behavior is when a browser only submits text files
about a crash with limited information and no memory dump cached on the disk. Almost
as good is when always asks if the user would like to submit a report, and offers to scrub
some information, as Firefox does. However, Firefox’s offer to not include the current
page URL may give users a false sense of security, since that data can probably be retried
from the dump file. Additionally, some of the crash data submitted to Mozilla is available
publically on their website. Chrome’s design is particularly lacking in that the dump
contains a fair amount of information, is submitted without prompting the user, and the
last dump collected is preserved in the user’s profile on disk.

Figure 44 gives a subjective assessment of how each browser did for each test, where
green indicates best performance, yellow indicates some troubling behavior, red indicates
a strong concern, and black indicates a test was not performed or was inconclusive.

Browser Residual Files Spying Plugin Browser Crash Plugin Crash Orphaned Session

Chrome]] < 9 P
Firefox (]) A ® &
IE <& AN @ @ AN
Opera @ @ @ ® <o
safari] P] 9 Y

Figure 44: Subjective Assessment of Browser Performance

40

Appendix A — Screenshots of Testing Webpages

This section contains screenshots of each page used for testing as it appeared during the
tests.

Sample Scriptable Plug-in

This page contains a testcase which demonstrates the work of scriptable 4 x style Navigator
plug-in with Mozilla. The example plug-in occupies the area right below this text, and you should
see a frame the plug-in draws around its window Below the plug-in window there are two
buttons. Clicking on the buttons will result in calling native plugin methods from JavaScript.
Show Version will instruct the plug-in to retrieve the Mozilla user agent string and display it in
the plug-in window, Clear button will call plug-in method to erase the window.

results go here:

| Call pluginobjfoof) || aler(pluginobjbar) || alert(pluginobj(foo) |
| alerfembed1.bar) || alerifembed1.foo() || alerfembed1() || embedlbar='foo' |

NPAPI Test Page

41

MATTHEW BURROUGH

petce—

Enucsmion
Liresist of s 31 Lins.Charrgsin, Libans, 1L
ics, 2011 - Prata
Exposiod Gratuainn. Sunmar, 214

Bochasm veies W Tchmaogy e, ¢
2 Mo o o oot e Syt st 203 207
imo ofCoremion ot Sy

Honors Frogram Graci

Vo Comims.Srtrty O R Syt

i o S5, e F o f Sy GPA 330

CERTIFICATIONS
Wacrosat Cunited Taner
Micrasot Canifed Solrtiuns Aasacis (MESAY:
Windns Sarvee 208
Wicrasat Ceifed T Sugpont Prfessions
sk Tanen Aceatates UGITE i)
Etograe Aaminiat (WEITF: £4)
‘Sanar Agninsatr [UGITP S4)
Wi 7 Enteranes Dagiop Adminaiacr (/T E24)
Windoss 7 Enieraios Deskicp Susgert Techwican (WCITR: EDST7)
Enfopran Sugoce Testmian (MCTTF: £5T)
e Supper Tochncan (HEITF: C51)
Micrasat Gerifed Systema Engineer MCSE) + Securty
s Gt Soenon Deps DUED)
stpac 3§
Wt Gt Ty Syt (TS)
Windous 7. Confguratin
e Serer 2008 2 Serve Viuatzation
Wit o 08 2 ot Wt
s intemols
HET Framscri 35 Wirsdoss Fama Apsicatins
Foraimt Cagnt and S, Gontgquanen
Vil Lioansing Spacials, Laps Orpangafions
Vakime Lcansng Spacatat, Smal and keum

s

e S TR A AT it
Winoes Sacer 2000 Ackve Dvecton. Contgurati
indons Seoar 08 et e, ot
Wincinas Serer 2000 Hypsr . Confi

Spstur Cante Vit Maghune Manager Confiraton

Beboss S N Gstprnon
g, and Hanapng 8 Hostrg Ensrmrment
S

NtraiaR Cutifid St Adviriabiate CSA) +

s rocanBcaicn

Sacuny Spacisiratin Skils Ot
et s o Aconamion S 94, enin
postborsivivaion

SHE Corified Bramdeast Webuash Toehricin [CENT)
EXPERIENCE

[l —
Eitin ey

00 - Pt
Pt ks o g o st and v gt g
Pl e o o . e o e o st

o
sty sty Gt e KB e BGLEL
raming doe ments. Mentorsd ol engmaees

e, Chaten 10
calatin Enguoeer
davch 008 - by 200
Erated st in ctamasoncnls o S Satormerce e

...mmmmm Wirdons she, Tarminai Sevces. nd o & Supgat)

Hatonl Putic R, Washirgicn, OC
Tact

It st et testing oo e
T ase B roupaeh, Gorfared 1 oepdc g s et Peoned sesuy
sesaaech on oss ayatems. Doveloped Program Asaoc ated Data. Prgram Samica
o

‘watses tackem
frimlg b eyl vy

Rochastar nettuta o Tachnahgy, Rachestse, HY

Hdacaned 1as o P Vi 35 200 S, nd s L ard
HMacinlsh (G5 1 104) byarm. £ i e chinyare s ga o et
i achaar e 2 ot sl e

o Tachr, e, VY
Some g

ey 05 g
Pt et s compie i 10T ek

Flochasiar nsttuta o Tachnabgy, Rochesisr, 1Y
dava Frogramning Seader

Suptembar 2004 - Fateusey 2005

Gradd aca gt for o Jara courses

Pircmon sy, P, 10
Duisty o

S 20 - Ao

A N —

1Bty Vptal Coparaion, Wamsn,)
dina 2001 - August 2001

P i i, s s e, s
T 6 0 1 £ a

PRESENTATIONS
pirianting and Wasaging Wiecs Sarver 20 Hypar!
gt thrae 33y catess an Hypee V 2 Mook Hanzons, Chari. fIC. 2011
O G o
P Croonc l et Consam Bt Som. Lot Vi 208

Emogor
Fitaonie Gt Rauntalo 3t 12 Dgisl Cies Curardce, Wagngian 2017
The iapc o Techoig
Gkt Prasa

rar, Haln Kk Hatinal Geer Agaptia Tachnoiogy Saminar, Naw Yok, 2007

NPA Laa an e s
Gues \Smbwim-Dc\mwiwnlyulEmncnlEnpmm Mairg, Ohiahoma Ciy, 2107

o for NP Fropamm,
St P L AL S5 ke, Chatt, 2307

ng”
‘Spaskes a1 ha NP Aato Accssabity Canferance, Washingin, 2007

Secun
ot Speshor o S Tochrobgy Cafrc, Lo Vegae, 207

rase P
et Sociny Schol roua-m.wuum:mmawy 205 - 007
amal S ot Titias ot

Place, WcAfem Hetrth Secuily Compiiien
o g Sin 988

MEMBERSHIPS
A Signa Lo Henorary Sccisy Wembar
e by G o
Ginca Hetwating Acaem
CompTia Marbar
It Sy (S0C) Gl Mo
‘Sokty of Bractast Engnases (EBE) Marmbsr
i o Encinca Ercimes Emeorm E2E) mber tams
Azl Computér Moy e Vbt iar

. krmation Technskogy Stsent Orgaizsinn, 2006 - 2007
i s B Teh ot S ALV S 007
ranearng fastant, WTR-FH. 2013

M:un; KB CERTIFIED
CERTIFIED CERTIFIED el gy

Troiner [T Professional Oeveloper Specialst L)

GERTIFIEOCERTIFIEOCERTIFIEDCERTIFIED
Spthans e v ommEmet

Burrough.org Page

42

WIKIPEDLA

The Eove Ear yeipedia

Wain pags

Danaie o Wkgedia

= maracian
Hel
Acait Wikigetia
Cammuny partal
Raga changes
Cantact Wikipada
» Taoibas

¥ Privtespan

- Lanquagss:
Gk

Portuquis
imps Ergish
Sesnska

Crasts secount & Login
Al Talk Fead Edi View histary |53 o

Cockapoo

From Wikipania the fres encitiopedia

A Contkigod i6 4 crass brasd dog M & 1ha cross of an American Cockar Spankal ar Engltih Cockar Spankil and @ peade (n mest £3sas 2
miniziure prode or oy peadel. or of teg cackapeas:
Contents o)
1Histary
2Heath
3 Charactunistics
45ew alzn
< Rofurancas
4 Extemal inks

Histary [adi]

A Cockapon of mating either the Spaniel ar English Cocker Spaniel wih 2 Poodle. They have been knawn
i thie Uiitied Statees sires thes 19505, The asiist krawn dctionary lsance wies & 1850 0ED ctatian 1!

atiars much s Th the American Kennel Ciub, the United Kennel Chub. ar the Canadian Kennel Ciu, do
et racagnize thi Cockapan, ar any athr crasabraed

Tr arpawan of Cockaps s vy
Bready Cacker Spaniel. Prode
Heaith [oc] |Giharmamas Cackoamos, Bpacdia (ALY

Oweral Cockapoas are ususlly haslihy and happy doga. Aa with 3 ki of smalkr dogs thay tard 10 be quite longdhed , and iTs not unususl far

cockapaos fo live to 15 years o mone F

Howewer both purebied pocdks and cocker spaniels can suffer from kit atalls and this 1hair afspring For

this reazan. an OF A, |Ortha padi it Animals) eaam s 1o check far dogs are bred

Puratrad peodles and cockar spanials can ako suflar fam @ number of aya dsons, inclidng poprasake rating atrophy (PRA). A CERF [Caning
= Eya Ragistration Faundstian) axam and DA bast for PRA should thersfors be pariamed bafors breeding

Lk many Moppy-asead brisads, Cockapoas can ba subject 10 ar infections, and ifs impeant b keep thav aas dean and dey

Characteristics [edit]

Cockapaos haw bacams papular bacauae they gararally combing the outgoing, kedng parsanaliy of the Cockar spankl with the kw-ahadding. low-dander quakins of the Poode 1
Crekeapans are inieligent. playful nd actie, snd thrive whan ey mceve eguisr asimiss

Tha Cackapod & @ crose-bread Not 3 pursiied, and d0as N6t "bragd 104”10 BISadars’ tames, Breadineg A" means that 1ha pups #il haw consistently pradctable characteristics.
Cockapaos, howewer, may inherit the characttistics of sither ar bath their parent breed=: Whike some Cock: s P Facsdle
raits, crasting & vasiation in Cackapos sppRarance and femparameni

Cockapaos sz vary in color [They may be
* Blick

* Tan, baige ar bt

* Rid, including aubum ond apicat eakars
* Brwwn, varying fiom kght to derk

+ Sabk, 8 brown coloe wih iipping and shading in bluck
* Cram

- viita

« Siar

« binds

* Phartam i marings &
Cockapaos £an be ana sakd coloe ar can have complie markings. Thay can ba whita with patzhas of any cakar. They can
freckies of cakor, cabes ficking

Cackopoas may olea hae @ mere coal, whees andam portions are diuted b creshs @ mottied sppsorance 1
Tha coat of tha Cackapon wil wary from dog ta dog. Mot sl hawa @ codt sonawhena batwasn Tha & Cockar Spanial
nd a Poodle. However, some wil hawe & coat mare smiar b the slesker coat of the Cocker Spaniel. while others may
hava & culiar coat lke @ Poodk
Cockapon size and weight ane a finction of what type of dogs the parents wens. Breedens usually use a toy ar

a ™ the weights 7T and haights™'™ o 1oy pacdias.
ministure poades, cocker spanels and cockapoos. using AKL standards and ather marmation

Breed fivmrage Height Hwerngs Weight
ToyPrade |10 nches (25 cmiorless |710 10 pounds (3.2t 45 by}
i:,a.:::-ﬁ Wirizture Poodie| 10 10 15 inches (25 ta 3 cm 16 b2 17 paunds (6810 7.7 ko)
achn ar e Cocker Spariel | 1410 17 inches (36 ta 43 cm) |26 to 3 pownds (1110 16 kgl
Cackapon 1140 16 inches: (26 ba 3 cm) |12 ta 24 pounds [5.410 11 kg

Eght maat 1 cockapee

Theare are cumantly thies Cackapoa clube in Amarica that are weeking baweards develaping the Cockapos by bresding succassie generations, and
astablishing & a5 3 meogrized brisd

Ses also |e=d]
* Croasbimad
o Liai of dag hybrids
References [sati]
1. *JackeFlap com
. s L3 2008, Rerkieved Aprl 17, 2011,
3. *"Thoasing 3 Breeder for Designar Dogs” K Oog Fancy. 2006-01-11. Retrieved 2008-01-22.
4 ® of the Crckapan” &P Cockanng Club of Amanca. Rerieved 2008-01-22
L Cral Calars” df. Cackapoa Club of GB. Retrieved 2012-03-08.

a Werle Coxt Faiern™ . Zim Fam by Cacker Spaniels, Rietmiesed 2008-00-07
7. #7The Poode” & Pet Guarian Angels of America. Revessd 20060111

8. *The Cacker 5p

El

]

#“Foadie Breed Standard” &, Amencan Kennel Clu, Revieved 2008-01-11.
Stondant . i

S aeh Ot Cactapon - Sarm m
stz

External links. |e=d]

& Tha Amsican Cockapao Chibd®
kapao Chib of Anarcad?

& Mosth American Cockapso Rigitry e
& Tha Cocispes Cluks of GBP

kapas in Ganmary &

* Tha Cackiapon Dwners Clu &

kapao
* Doglimed?

* Cockapao Placa @

azy

Catagoras: Dog erussbrid | Desdes

Tris page wiss st redied o0 §

Testis BunbiE ey e Crestie . Bee T
petntin 1 oo, 8

[- [Rl T ==

Wikipedia Cockapoo Page

43

References

Aggarwal, G., Bursztein, E., Jackson, C., & Boneh, D. (2010). An analysis of private browsing
modes in modern browsers. Proc. of 19th Usenix Security Symposium.

Barnabe, J. (2007, May 28). Urlclassifier2.sqlite. Retrieved November 21, 2012, from
mozillaZine: http://kb.mozillazine.org/Urlclassifier2.sqlite

Ben. (2005, August 4). Building an extension. Retrieved November 20, 2012, from Mozilla
Developer Network: https://developer.mozilla.org/en-
US/docs/Building_an_Extension

cor-el. (2012, May 8). Are extentions disabled in private browsing in firefox??? Retrieved
November 20, 2012, from Mozilla Support: https://support.mozilla.org/en-
US/questions/926986

Dunn, N. (2011, May 3). Issue 81400: Extension API causing crash. chrome.windows.create
causes crash if only a single app mode window is open. Retrieved November 18,
2012, from Chromium Issues:
http://code.google.com/p/chromium/issues/detail?id=81400

Google. (2012). NPAPI Plugins. Retrieved November 20, 2012, from Google Chrome
Extensions: http://developer.chrome.com/extensions/npapi.html

Gould, S. (2008). See inside index.dat files. Retrieved November 21, 2012, from
stevengould.org:
http://www.stevengould.org/index.php?option=com_content&task=view&id=47

<emid=88
Jones, K. (2010, May 23). Writing a Managed Internet Explorer Extension: Part 1. Retrieved
November 18, 2012, from Random Agile Thoughts:

http://msmvps.com/blogs/vcsjones/archive/2010/05/23/writing-a-managed-
internet-explorer-extension-part-1.aspx

Jung, E. (2007, January 30). On page load. Retrieved November 20, 2012, from Mozilla
Developer Network: https://developer.mozilla.org/en-
US/docs/Code_snippets/On_page_load

Kornblum, J., & Metz, J. (2007, March 10). Internet Explorer History File Format. Retrieved

November 21, 2012, from Forensics Wiki:
http://www.forensicswiki.org/wiki/Internet_Explorer_History File_Format#REDR
_Records

Mahendrakar, A., Irving, J., & Patel, S. (2011). Forensic analysis of private browsing
artifacts. Innovations in Information Technology (IIT) (pp. 197-202). IEEE.

Microsoft. (2012, February 13). Windows Error Reporting: Getting Started. Retrieved
November 24, 2012, from Dev Center - Hardware: http://msdn.microsoft.com/en-
us/library/windows/hardware/gg487440.aspx

Microsoft Corporation. (2012, October 16). Collecting User-Mode Dumps (Windows).
Retrieved November 19, 2012, from Windows Dev Center - Desktop:
http://msdn.microsoft.com/en-
us/library/windows/desktop/bb787181%28v=vs.85%29.aspx

44

Mills, C. (2012, February 9). 64-bit Opera, and out-of-process plug-ins. Retrieved
November 20, 2012, from DEV.Opera: http://dev.opera.com/articles/view/64-bit-
opera-and-out-of-process-plug-ins/

Mozilla. (2007, September 21). NpRuntime. Retrieved November 20, 2012, from Mozilla
Samples:
http://mxr.mozilla.org/firefox/source/modules/plugin/samples/npruntime/

Opera Software. (2008, January 18). The Opera plug-in interface. Retrieved November 20,
2012, from DEV.Opera: http://dev.opera.com/articles/view/the-opera-plug-in-
interface/#security

Russinovich, M. (2012, May 14). Strings v2.5. Retrieved November 24, 2012, from
Windows Sysinternals: http://technet.microsoft.com/en-
us/sysinternals/bb897439.aspx

Sofer, N. (2012). Web Browser Tools Package. Retrieved November 21, 2012, from NirSoft:
http://www.nirsoft.net/web_browser_tools.html

Soghoian, C. (2010). Private Browsing Modes Do Not Deliver Real Privacy. IAB Internet
Privacy Workshop. Boston.

Vel, S. (2008, May 23). Troubleshooting Agentless Exception Monitoring and Desktop Error.
Retrieved November 19, 2012, from TechNet: http://blogs.technet.com/cfs-
filesystemfile.ashx/__key/communityserver-components-postattachments/00-
03-06-00-25/Troubleshooting-AEM-and-DEM.docx

Verdi, M. (2010, June 30). Send plugin crash reports to help Mozilla improve Firefox.
Retrieved November 20, 2012, from Mozilla Support:
http://support.mozilla.org/en-US/kb/send-plugin-crash-reports-help-improve-
firefox#tw_what-information-is-sent-in-a-crash-report

West, M. (2012). WebNavigation Tech Demo. Retrieved November 18, 2012, from Google
Chrome Extensions - Sample Extensions:
http://developer.chrome.com/extensions/examples/api/webNavigation/basic.zip

Wyman, A. (2010, July 14). Plugin-container and out-of-process plugins. Retrieved
November 20, 2012, from mozillaZine: http://kb.mozillazine.org/Plugin-
container_and_out-of-process_plugins

Zeigler, A. (2008, July 28). IE8 and Reliability. Retrieved November 18, 2012, from IEBlog:
http://blogs.msdn.com/b/ie/archive/2008/07/28/ie8-and-reliability.aspx

45

	Abstract
	Introduction
	Test Machine Configuration
	Chrome
	Firefox
	Internet Explorer
	Opera
	Safari

	Test 1: Monitoring for residual files
	Chrome
	Firefox
	Internet Explorer
	Opera
	Safari

	Test 2: Spying Browser Extension
	Chrome
	Firefox
	Internet Explorer
	Opera
	Safari

	Test 3: Crashing Browser
	Chrome
	Firefox
	Internet Explorer
	Opera
	Safari

	Test 4: Crashing Plug-In
	Chrome
	Firefox
	Internet Explorer
	Opera
	Safari

	Test 5: Abandoned Browser Reconnaissance
	Chrome
	Firefox
	Internet Explorer
	Opera
	Safari

	Conclusion
	Appendix A – Screenshots of Testing Webpages
	References

