
Leaks in Web Browser Privacy Modes

Matt Burrough
Burrogh2@illinois.edu

CS 461
November 2012

1

Abstract

This paper provides an examination of five possible circumvention techniques for browser
privacy modes. These include residual files, malicious extensions, browser crashes,
extension crashes, and non-terminated browsers. The success of these techniques is
evaluated across Google Chrome, Mozilla Firefox, Microsoft Internet Explorer, Opera, and
Apple Safari running on a Windows 7 system.

Disclosure: I have been employed by Microsoft full time for the past 56 months. That said, I do not work on
the Internet Explorer team and have no direct contact with them. I have not used any internal Microsoft
resources in the preparation of this report, and have not intentionally favored Internet Explorer or omitted any
findings. Additionally, I have not reverse-engineered any of the products described in this report. This paper’s
contents are the sole work and ownership of the author, and do not represent any opinions of his employer.
Microsoft has not reviewed or approved its content in any way.

THIS PAPER MAY NOT BE REDISTRUBTED OR POSTED WITHOUT EXPLICIT PERMISSION FROM THE AUTHOR.

2

Introduction

Browser “privacy” modes have been included in the last several releases of every major
web browser on the market. While this functionality does nothing to protect the identity
of a user to the web sites visited, nor to hide browsing habits from network providers
(Soghoian, 2010), users have come to trust these modes to keep confidential their web
history from others with access to their computers. Is it possible that this trust is
misplaced? In spite of the prevalence of privacy modes, little research has been done to
validate if ones web history truly is protected when using them.

Two academic papers on the topic are “Forensic Analysis of Private Browsing Mode in
Popular Browsers” (Mahendrakar, Irving, & Patel, 2011) and “An Analysis of Private
Browsing Modes in Modern Browsers” (Aggarwal, Bursztein, Jackson, & Boneh, 2010).
The former mainly examines system memory using forensic analysis tools during and
immediately after private browsing. The later takes more of a survey approach, examining
many facets of browser privacy.

This paper aims to determine if a 3rd-party could determine the browser history of a user
utilizing private browsing by examining five areas where browser history may be exposed
in spite of running in a privacy mode. This is not meant to be a fully exhaustive list of
tests, but rather to highlight some potential areas of concern and validate if that concern
is warranted. The tests are:

1. Confirm that files are not left behind by the browser itself when private mode is
deactivated. This will be accomplished by reviewing process monitor logs to
observe which files are modified during private browsing and validating that they
have been scrubbed or removed when the session is ended.

2. Creating a collection of browser extensions that covertly leak a user’s browsing
history to a 3rd party. Browsers will be tested to see if they allow the extension to
load in private mode, and if so, if they at least provide some warning or make the
loading of the extension difficult for the user.

3. Determine what information is saved and reported to browser vendors when a
browser crashes in privacy mode. In order to facilitate a crash, a debugger will be
used to induce an unhandled exception.

4. Validate if a crashing browser extension results in information disclosure to the
browser vendor.

5. Investigate what information can be obtained from a browser in privacy mode if a
user closes any open tabs but does not exit the process.

Each of these are either novel when compared to areas examined in existing literature, or
are approached in a different way than in the previous papers. For example, where other
papers look at popular extensions to see if they disclose any history from private sessions,

3

the papers do not attempt to create a malicious extension. Additionally, this paper seeks
to include Opera where possible, which was omitted from other papers.

Test Machine Configuration

To analyze each browser, a virtual machine was created in VirtualBox 4.2.2 running on a
Windows 7 x64 SP1 host on an Intel i7-950 with 12 GB of RAM and VT-x enabled. The
virtual machine was built with 2 GB of allocated memory, two virtual cores, a 50 GB VHD
disk file, and Windows 7 Home Basic x86 SP1. Windows 7 was chosen as it is both widely
used and supports a wide variety of browsers. The x86 architecture was chosen to avoid
the complication of WOW64 when using debugging tools.

The VM was configured with each of the following:

 All updates offered on Windows Update as of 10/19/2012 except Bing Desktop
and Silverlight 5

 VirtualBox guest additions 4.2.2

 Process Monitor v3.03

 Process Explorer v15.23

 ProcDump v5.0

 Microsoft Network Monitor v3.4

 Microsoft Security Essentials

 NotMyFault

 The Debugging Tools for Windows package v6.2.9200.16384

 Windows 8 SDK (as much as required to install the debugging tools package)

 OS Set for complete memory dumps, page file set to 2.5 GB min/4 GB max

 1280x1024 resolution (single screen)

 The system environment variable “_NT_SYMBOL_PATH” set to
“srv*c:\symbols*http://msdl.microsoft.com/download/symbols;SRV*c:\symbols*
http://symbols.mozilla.org/firefox;srv*c:\symbols*http://chromium-browser-
symsrv.commondatastorage.googleapis.com”

Otherwise, the VM was installed with all default options. The VM NIC was bridged to the
author’s home network and the VM’s network policy was set to “Home”. One account
was created during Windows installation named “testuser”. It had administrative rights,
though UAC was enabled so the account typically ran with least privilege.

With these programs and settings in place, the VM was snapshotted so it could be
reverted to this state between each test to ensure a clean testing environment. From
here, five sub-snapshots were created, one for each browser. (Note that all sections are
written with browsers in alphabetical order.)

4

Chrome
Google Chrome 22.0.1229.94m was installed in this snapshot and set as the default
browser and with usage and crash reporting enabled. A reboot was performed after the
installation but before taking the snapshot.

Firefox
This snapshot had Firefox 16.0.1 installed using the standard install option and set as the
default browser. The homepage was set to a blank page, and Mozilla usage and error
reporting was enabled (opted-in) during installation. Hardware acceleration was set to
disabled to avoid any issues with the VirtualBox vGPU. A reboot was performed after the
installation but before taking the snapshot.

Internet Explorer
This snapshot was upgraded to Internet Explorer (IE) 9. IE was configured to use
recommended security and compatibility settings. The home page was set to about:blank.
Software rendering was set to enabled to avoid any issues with the VirtualBox vGPU. A
reboot was performed before taking the snapshot.

Opera
In this snapshot, Opera 12.02 was installed as the default browser. The home and startup
pages were set to about:blank. A reboot was performed after the installation but before
taking the snapshot.

Safari
Finally, Safari 5.1.17 was installed with all installation options enabled. The start page was
set to an empty page. A reboot was performed after the installation but before taking the
snapshot.

Test 1: Monitoring for residual files

The most obvious violation of the concept of private browsing is traces of websites visited
while in private mode left behind on the user’s disk. For this test, each browser was
started in its VM snapshot, and put into private mode. Process Monitor was then
launched and filtered to just processes related to that browser. The first tab in private
browsing was navigated to http://www.burrough.org while a second tab was created and
navigated to http://en.wikipedia.org/wiki/Cockapoo. (The dog breed Cockapoo was
chosen as the article is relatively short but contains several images, and the author is
partial to that breed.) Once both pages finished loading, the browser was exited and
process monitor stopped. The process monitor log was then reviewed for file and registry

http://www.burrough.org/
http://en.wikipedia.org/wiki/Cockapoo

5

entries that were created during the session, and those items were then searched for in
the registry and file system.

Chrome
Chrome primarily used one directory and two registry keys while operating in incognito
mode:
HKEY_LOCAL_MACHINE\SOFTWARE\Google\Update\ClientState
HKEY_CURRENT_USER\Software\Google\Update\ClientState
C:\Users\testuser\AppData\Local\Google\Chrome\User Data\Default\

Reviewing the registry keys, these appear to mostly contain information about Chrome
itself like installation path, version number, language, and update check information, none
of which appears to be sensitive.

Within the Default folder, there were nine files that were modified during incognito
browsing, as well as one subfolder, Cache, which contained one modified file. The files
each came in pairs, with one file being a journal version for the other, likely for
consistency. The files were History, Web Data, Cookies, and Preferences, plus a file
data_01 in the cache directory. Using tools from NirSoft (Sofer, 2012), each file could be
decoded.

ChromeHistoryView from NirSoft revealed that no entries were left in the web history
from the incognito session.

The Web Data files were in binary form, but contained a SQLite header, so SQLite
Database Browser from http://sourceforge.net/projects/sqlitebrowser/ was used to
examine the files. The database contained a series of tables for form auto-complete
information. The only one populated was the list of search engines to use – Bing, Google,
or Yahoo. Otherwise, all of the tables were blank.

Nirsoft did not make a Cookies viewer for Chrome, but the file was again a SQLite
database, so again SQLite browser was used to examine the file. It appears that all of the
cookies were for a previous session and none were from visiting Wikipedia. It was
confirmed that, under normal browsing mode, Wikipedia would place a cookie on the
system.

The preferences file was not binary, and was human readable. It appeared to contain the
user’s browser preference information, and did not contain anything private.

Using NirSoft’s ChromeCacheView tool, the files in the cache subdirectory were examined.
Although one file had a modified timestamp reflecting the time of private browsing, no
entries in the cache were from that session.

http://sourceforge.net/projects/sqlitebrowser/

6

Firefox
Process monitor revealed a number of files that were modified at the time of private
browsing. There were no modified registry keys/values. All of the modified files were
located in two folders in the user’s profile:
C:\Users\testuser\AppData\Local\Mozilla\Firefox\Profiles\(Mozilla Profile ID)\
C:\Users\testuser\AppData\Roaming\Mozilla\Firefox\Profiles\(Mozilla Profile ID)\

Reviewing the files, many were specific to the Firefox application, such as last window
size, timestamp of last successful exit, and the like. These pose no risk of information
disclosure, other than the fact that the browser was run at this specific time.

One subfolder of the user’s profile that was modified was the cache directory. This
initially was cause for some concern, as browser caches should not contain data resulting
from private browsing. Mozilla keeps its cache in a non-human viewable format, so
MozillaCacheView from NirSoft was used to view the contents of the cache. This revealed
that the cache only contained the initial Firefox start page that was opened before the
browser could be put into private browsing mode. No other content was contained in the
cache.

Another file that was updated was cookies.sqlite. This file contains cookie information for
the user. NirSoft’s MozillaCookiesView was used to open the file. It contained three
cookies, one from Mozilla.org, one from google.com, and one from webtrendslive.com. It
appears that all three were placed by the initial start page, and not by subsequent private
browsing.

The only other file in the profile that was updated was urlclassifier3.sqlite. It is a binary
file so its contents could not be directly viewed. According to MozillaZine, this file is used
to contain a list of known malware and phishing sites and is updated from a feed from
Google (Barnabe, 2007). Thus, it is unlikely that this file contains any personal
information, though this was not confirmed given the inability to read the file.

Internet Explorer
There was considerable registry access during the use of InPrivate mode in Internet
Explorer. While many of the other browsers seem to rely largely on configuration and
preference files, many of these settings are found in the registry for IE, mainly under
HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\. Examination of this key
and searching the registry as a whole showed that none of the private browsing history
was stored in the registry.

In terms of file system write access, it was mostly concentrated in
C:\Users\testuser\AppData\Local\Microsoft\Windows\Temporary Internet Files\Low and

7

C:\Users\testuser\AppData\Local\Microsoft\Windows\History. There was also some
access to C:\Users\testuser\AppData\Roaming\Microsoft\Windows\IEDownloadHistory
and C:\Users\testuser\AppData\Roaming\Microsoft\Windows\Cookies\Low. These are
the folders responsible for IE’s cache, history, download history, and cookies respectively.
One benefit of IE is that it stores all of these files as actual individual files, instead of in
different databases. This made visually inspecting the folders to confirm that no traces of
any of the files from the InPrivate session were still present possible.

IE also uses index.dat files in these locations to catalog the files present. Most of these
files showed no evidence of any of the files or URLs from InPrivate browsing, however the
index.dat located in C:\Users\testuser\AppData\Local\Microsoft\Windows\Temporary
Internet Files\Low\Content.IE5\ did contain the burrough.org URL, though not Wikipedia’s
(Figure 1). Once this entry was discovered, an Index.dat viewer (Gould, 2008) was
installed to gain more insight into the record. This utility revealed that the entry was a
REDR record (Figure 2), which according to (Kornblum & Metz, 2007), is a redirected URL.
This was confirmed through further testing, which revealed that entering the shorter
“burrough.org” redirected the browser to “http://www.burrough.org/pages/index.aspx.”
Other redirection pages like fwlink pages on go.microsoft.com (used to create
permalinks/URL shortening in Microsoft documentation) also appear in this index.dat as
REDR records.

Figure 1: IE Cache Index.dat

Figure 2: Index Dat Spy Entry

8

Opera
Opera seems to store all of its cookie, history, and cache information, as well as browser
settings in two directories in the user’s profile:
C:\Users\testuser\AppData\Roaming\Opera\Opera
C:\Users\testuser\AppData\Local\Opera\Opera

The majority of the files in these directories are either DAT files that are largely ASCII, INIs,
or XML. Reviewing every file with a modified timestamp from the time of the private
session, none contained any sensitive information. NirSoft’s OperaCacheView showed the
same. Opera did not appear to store anything of interest in the registry.

Safari
Reviewing entries for the Safari and WebKit2WebProcess processes, once accesses for
things like font lookups, default web browser settings, and DLL loads were excluded, Safari
actually made relatively few calls to the file system and essentially none to the registry.
Those that it did make went to the same two folders seen for other browsers:
C:\Users\testuser\AppData\Local\Apple Computer\Safari
C:\Users\testuser\AppData\Roaming\Apple Computer\Safari

Most of the files therein are SQLite databases, with a few other binary files and some
XML. Reviewing each, none appeared to contain any information from the private
browsing session. NirSoft’s SafariCacheView further confirmed this.

Test 2: Spying Browser Extension

In this test, a custom browser extension was created for each browser tested. The
extension generally tried to monitor for page navigation and provide this information to a
third party, without notice to the user.

Chrome

Chrome offers a powerful extension system based on JavaScript. The WebNavigation
sample code (West, 2012) from Chrome’s sample area was used as a base for this
extension. The sample code was first modified to remove the UI portion of the code that
is exposed to the user – this code originally provided a history-type view to the user in a
pop-up menu, but that would hinder the covert nature of add-in.

Next, code was added to post the URL of any completed page navigation to pastebin.com.
This site was chosen as it provides an API that allows anonymous submissions via HTTP
POST messages, which can later be viewed. This would not be an ideal site for

9

implementing a history-recording add-on in practice, as it limits the number of posts
submitted per day from a given user/computer. However, it would trivial for an attacker
to set up a simple web server that accepted POSTs and stored them in a simple database.

The extension was packaged in to a Chrome Extension (.crx) file. When loading the
extension, Chrome presented a dialog box alerting the user that the extension would have
permission to their browsing activity and to pastebin.com (Figure 3).

Figure 3: Chrome Extension Permission Dialog

Once the add-in was loaded, it still will not run in Chrome’s “incognito” mode by default.
For it to do so, the user must check the option in Chrome’s Extension list (Figure 4). Upon
selecting it, Chrome displays a warning message (Figure 5).

Figure 4: Chrome extension list

10

Figure 5: Chrome Extension Warning

After the plugin was installed and checked to allow it to run in incognito mode, it
functioned as expected. There were no further warnings that it was submitting URL
history to PasteBin, and the URLs appeared on the PasteBin site. Further launches of
Chrome in incognito mode provided no warning that any extensions were enabled,
though the start page of chrome does mention that loaded extensions could violate their
privacy:

“You've gone incognito. Pages you view in this window won't appear in your browser history

or search history, and they won't leave other traces, like cookies, on your computer after you

close all open incognito windows. Any files you download or bookmarks you create will be

preserved, however.

Going incognito doesn't affect the behavior of other people, servers, or software. Be

wary of:

 Websites that collect or share information about you

 Internet service providers or employers that track the pages you visit

 Malicious software that tracks your keystrokes in exchange for free smileys

 Surveillance by secret agents

 People standing behind you

Learn more about incognito browsing.
Because Google Chrome does not control how extensions handle your personal data, all

extensions have been disabled for incognito windows. You can reenable them individually in

the extensions manager.”

This message only loads if the user has not specified their own home page, and the
warning about extensions at the end of the message appears regardless if the user has any
extensions enabled in incognito mode.

Firefox

Firefox has a very strong extension API that, like Chrome, allows developers to create
extensions in JavaScript. Using the same method as in Chrome, an extension was written

11

that reports URLs to pastebin.com upon page load. The code between the two browsers
was similar, though the page change notification handling was a bit different. In Chrome,
the webNavigation API allows access to page change notifications, while Firefox allows
onPageLoad DOM event listeners to be registered. Once fired, the code to perform the
POST was identical aside from debug prints for testing. Two resources that were
invaluable for preparing a Firefox plugin were (Ben, 2005) and (Jung, 2007).

One interesting aspect about Firefox is that it is very trusting of the extensions that users
load. When dropping the .xpi extension file onto Firefox, it presented a warning that the
extension was not signed, but allowed the installation to proceed (Figure 6). The UI did
not give any indication about what types of access or operations the plugin might use.

Figure 6: Firefox Extension Installation

After the plugin was installed, Firefox made no mention about the plugin or its activity
when switched into private browsing mode. In fact, even the private browsing warning
page did not mention extensions (Figure 7). The linked “Learn More” page
(http://support.mozilla.org/en-US/kb/private-browsing-browse-web-without-saving-
info?redirectlocale=en-US&as=u&redirectslug=Private+Browsing) also failed to mention
extensions. The only documentation stating that extensions remained enabled in private
browsing mode was from a moderator on the Mozilla forums (cor-el, 2012).

12

Figure 7: Firefox Private Browsing Start Page

Internet Explorer

Internet Explorer’s extension interface is quite different from Chrome’s. It relies on C/C++
DLLs to be loaded which interact with IE’s COM interface. Recently, several examples of
.NET (managed) extensions have appeared online. These samples leverage .NET’s
platform invocation (p/invoke) feature. A particularly good sample and explanation of
interacting with IE from a .NET library can be found in (Jones, 2010). Using Jones’ example
as a starting point, the message box call was removed and additional code was added to
create a WebClient object that submits the URL of the current page to PasteBin’s POST
interface as the Chrome extension did. The extension submits the URL as soon as a page
finishes loading.

A major difference from Chrome’s implementation is that Internet Explorer cannot detect
the permissions/capabilities of extensions because they are native binaries. As such, the
prompt to enable an Internet Explorer extension simply asks the user whether to enable it
(Figure 8).

Figure 8: Internet Explorer Extension Installation

Upon loading the extension and restarting Internet Explorer, the extension began
reporting the URLs of loaded pages in normal IE operation. However, after switching into
IE’s “InPrivate” mode, no pages were reported. Further investigation revealed that, by
default, IE does not load any extensions while in InPrivate mode. This behavior can be
altered by changing a setting in Internet Options (Figure 9). (IE does not allow individual

13

extensions to be opted-on/off in its privacy mode as Chrome does.) Once changed, the
extension worked as expected.

Much like Chrome, the default start page of IE when in InPrivate mode is a static message
that does not indicate if any extensions are loaded:

“InPrivate Browsing helps prevent Internet Explorer from storing data about your browsing session.

This includes cookies, temporary Internet files, history, and other data. Toolbars and extensions are

disabled by default. See Help for more information.

To turn off InPrivate Browsing, close this browser window.”

Figure 9: Internet Explorer Privacy Settings

Opera

After hours of reviewing Opera extension documentation, sample extensions, and testing
multiple iterations of code, the author was unable to create an Opera Extension
(“Widget”) that would reliably fire when a page completed loading. Even using Opera-
provided sample extensions that were supposed to function on page load without any
changes, the extensions did not fire. With Opera’s extension developer community
seeming to be smaller than that of other browsers, and its less advanced plug-in
infrastructure, an attempt to get a prototype working was deemed futile.

14

In testing extension code, it was noted that installing any add-in that accesses sensitive
information triggers Opera to include two check boxes on the Extension installation
window (Figure 10). By default, extensions that access any private information by default
do not load in Opera’s private tabs. A user would need to opt-in explicitly to enable the
extension.

Figure 10: Opera Extension Installation Prompt

Safari

This test was not performed on Safari because Apple requires developers to sign an
explicit agreement that states that they will not produce extensions that intentionally
violate its users’ privacy. The other browsers tested in this section did not have a formal
EULA and registration process required to develop an extension.

Safari’s extension platform appears to be JavaScript-based like Chrome, so it is
conceivable that a similar attack here would have similar success as in Chrome.
Additionally, in testing publically available extensions in Safari, they continue to load in
Private mode without any warning or indication of possible privacy violations. The
extensions load by default in Private mode, without any reconfiguration or settings
change required.

15

Test 3: Crashing Browser

This test involves simulating a code defect in a browser by attaching a debugger to the
browser process when in private mode, breaking in, replacing an instruction with an
unhandled illegal operation, and detaching the debugger. Upon detach, the process will
resume and crash. Any resulting crash dump or error reporting logs will be examined to
see if information about the browsing session can be determined.

For each test, the browser was put into private mode and two tabs were opened – one to
www.burrough.org and one to wikipedia.org/wiki/cockapoo. Windbg.exe was then
attached to the main browser process, and an instruction was changed to cause a crash.
Process Monitor was used to look for any dump files or other crash info written to the file
system.

Chrome
For Chrome, with two tabs open in incognito mode, there were three Chrome processes
(one for each tab, plus one parent process), as well as a GoogleChrashHandler.exe
instance. The debugger was attached to the parent Chrome process. After breaking in,
the debugger was used to unassembled the topmost Chrome function on the main thread
from the point where user32.dll would return to it. About 10 instructions in, the code
contained a call instruction. Using the debugger’s memory editing command (eb), the
command was changed to call a null pointer (0000000). The debugger was then detached
gracefully so the process would resume, but not be running under the windbg debugger.
This sequence of commands is illustrated in Figure 11.

Figure 11: Chrome Crash Setup

Microsoft (R) Windows Debugger Version 6.2.9200.16384 X86

Copyright (c) Microsoft Corporation. All rights reserved.

*** wait with pending attach

Symbol search path is:

srv*c:\symbols*http://msdl.microsoft.com/download/symbols;SRV*c:\symbol

s*http://symbols.mozilla.org/firefox;srv*c:\symbols*http://chromium-

browser-symsrv.commondatastorage.googleapis.com

Executable search path is:

ModLoad: 00c20000 00d57000 C:\Program

Files\Google\Chrome\Application\chrome.exe

...

 (82c.bc0): Break instruction exception - code 80000003 (first chance)

eax=7ffa0000 ebx=00000000 ecx=00000000 edx=779bf17d esi=00000000

edi=00000000

eip=7795410c esp=072cf954 ebp=072cf980 iopl=0 nv up ei pl zr na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000

efl=00000246

16

Figure 11: Chrome Crash Setup (continued)

ntdll!DbgBreakPoint:

7795410c cc int 3

0:030> ~0s

eax=00000000 ebx=0031f8b4 ecx=00000000 edx=003d8600 esi=00000001

edi=0031f8d4

eip=77967094 esp=0031f864 ebp=0031f900 iopl=0 nv up ei pl zr na

pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000

efl=00000246

ntdll!KiFastSystemCallRet:

77967094 c3 ret

0:000> k

ChildEBP RetAddr

0031f860 77966a04 ntdll!KiFastSystemCallRet

0031f864 75bc6a8e ntdll!NtWaitForMultipleObjects+0xc

0031f900 77aabd66 KERNELBASE!WaitForMultipleObjectsEx+0x100

0031f948 75f862f9 kernel32!WaitForMultipleObjectsExImplementation+0xe0

0031f99c 6984b9c2 USER32!RealMsgWaitForMultipleObjectsEx+0x13c

0031f9d8 6984b5f8

chrome_696b0000!base::MessagePumpForUI::WaitForWork+0x24

0031fa08 696e27c7 chrome_696b0000!base::MessagePumpForUI::DoRunLoop+0xb8

…

0031fd70 00000000 ntdll!_RtlUserThreadStart+0x1b

0:000> * //Let's look at the return point into the first chrome

function...

0:000> u 6984b9c2

chrome_696b0000!base::MessagePumpForUI::WaitForWork+0x24:

6984b9c2 85c0 test eax,eax

6984b9c4 7546 jne

chrome_696b0000!base::MessagePumpForUI::WaitForWork+0x6e

6984b9c6 6a06 push 6

6984b9c8 8945e4 mov dword ptr [ebp-1Ch],eax

6984b9cb 8945e8 mov dword ptr [ebp-18h],eax

6984b9ce 8945ec mov dword ptr [ebp-14h],eax

6984b9d1 8945f0 mov dword ptr [ebp-10h],eax

6984b9d4 8945f4 mov dword ptr [ebp-0Ch],eax

0:000> u

chrome_696b0000!base::MessagePumpForUI::WaitForWork+0x39:

6984b9d7 8945f8 mov dword ptr [ebp-8],eax

6984b9da 8945fc mov dword ptr [ebp-4],eax

6984b9dd ff152416896b call dword ptr [(6b891624)]

6984b9e3 c1e810 shr eax,10h

6984b9e6 a806 test al,6

6984b9e8 7422 je (6984ba0c)

6984b9ea 6a00 push 0

6984b9ec 680e020000 push 20Eh

0:000> * //The call looks like a good candidate to replace with a call

to 0

0:000> eb 6984b9dd

6984b9dd ff ff

ff

6984b9de 15 15

15

17

Figure 11: Chrome Crash Setup (continued)

 Once Chrome resumed, it immediately crashed as evidenced by the dialog shown in
Figure 12. This resulted in a dump and text file being saved to C:\Program
Files\Google\CrashReports by GoogleCrashHandler.exe. Both files had the same name,
which was a GUID, only distinguished by their respective file extensions. After
GoogleCrashHandler completed its operation, it deleted the text file and renamed to
dump file to Chrome-last.dmp, overwriting any existing Chrome-last.dmp.

Figure 12: Chrome Crash

6984b9df 24 00

00

6984b9e0 16 00

00

6984b9e1 89 00

00

6984b9e2 6b 00

00

6984b9e3 c1

0:000> u 6984b9c2 L10

chrome_696b0000!base::MessagePumpForUI::WaitForWork+0x24:

6984b9c2 85c0 test eax,eax

6984b9c4 7546 jne

chrome_696b0000!base::MessagePumpForUI::WaitForWork+0x6e

6984b9c6 6a06 push 6

6984b9c8 8945e4 mov dword ptr [ebp-1Ch],eax

6984b9cb 8945e8 mov dword ptr [ebp-18h],eax

6984b9ce 8945ec mov dword ptr [ebp-14h],eax

6984b9d1 8945f0 mov dword ptr [ebp-10h],eax

6984b9d4 8945f4 mov dword ptr [ebp-0Ch],eax

6984b9d7 8945f8 mov dword ptr [ebp-8],eax

6984b9da 8945fc mov dword ptr [ebp-4],eax

6984b9dd ff1500000000 call dword ptr ds:[0]

6984b9e3 c1e810 shr eax,10h

0:000> * //The change looks good. Time to detach and wait for the crash.

0:000> qd

18

The dump file was not a complete userdump, however it did contain the crashing stack,
registers, and portions of memory. Unfortunately for the user, in addition to being able to
determine the username, hostname, domain, domain controller, and the fact that the
user was using incognito mode from the process environment block (PEB) (Figure 13), the
dump contained the URL of one of the incognito tabs (Figure 14). Presumably this dump
was uploaded to Google. It was also left on the disk as the Chrome-last.dmp file. The text
file contained mostly unintelligible hex values, though it did indicate that the browser was
running in incognito mode, and listed the Chrome version number.

Figure 13: Chrome PEB from dump

Figure 14: URL in Chrome memory dump

0:000> !peb

PEB at 7ffde000

 CommandLine: '"C:\Program Files\Google\Chrome\Application\chrome.exe" --

incognito'

...

 Environment: 001481d0

 COMPUTERNAME=BROWSERTEST

 LOGONSERVER=\\BROWSERTEST

 USERDOMAIN=browsertest

 USERNAME=testuser

 ...

19

Firefox
Firefox could be crashed in much the same was as Chrome. The main thread’s most
recent Mozilla-provided function was unassembled from its return address and the first
call was changed to a null reference (Figure 15). Like Chrome, Firefox has its own crash-
reporting agent, crashreporter.exe, which launched as soon as the process crashed. Their
crash handler wrote a dump and an .extra file to
C:\Users\testuser\AppData\Roaming\Mozilla\Firefox\Crash Reports\pending. Unlike
Chrome’s crash reporting, Mozilla prompts the user for how they would like to proceed
concerning reporting (Figure 16).

Figure 15: Firefox Crash Setup

0:034> ~0s

eax=00000001 ebx=00000001 ecx=75e2cc37 edx=00000030 esi=75e2634a

edi=00000000

eip=77397094 esp=0024c998 ebp=0024ca54 iopl=0 nv up ei pl nz na po

nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000

efl=00200202

ntdll!KiFastSystemCallRet:

77397094 c3 ret

0:000> k

ChildEBP RetAddr

0024c994 75e266c9 ntdll!KiFastSystemCallRet

0024c998 68948f6d USER32!NtUserWaitMessage+0xc

0024ca54 689497d2 xul!nsAppShell::ProcessNextNativeEvent+0x35d

…

0024ecf8 01351742 xul!XRE_main+0x30

0024f7d0 01351a64 firefox!wmain+0x742

0024f814 7700ed6c firefox!__tmainCRTStartup+0x122

0024f820 773b377b kernel32!BaseThreadInitThunk+0xe

0024f860 773b374e ntdll!__RtlUserThreadStart+0x70

0024f878 00000000 ntdll!_RtlUserThreadStart+0x1b

0:000> u 68948f6d

xul!nsAppShell::ProcessNextNativeEvent+0x35d:

68948f6d 84db test bl,bl

68948f6f 0f85dbfcffff jne (68948c50)

68948f75 e997fdffff jmp (68948d11)

68948f7a 8b4c2418 mov ecx,dword ptr [esp+18h]

68948f7e 8b11 mov edx,dword ptr [ecx]

68948f80 8b4234 mov eax,dword ptr [edx+34h]

68948f83 ffd0 call eax

68948f85 8a44240e mov al,byte ptr [esp+0Eh]

0:000> eb 68948f83

68948f83 ff ff

ff

68948f84 d0 15

15

68948f85 8a 00

00

68948f86 44 00

00

20

Figure 15: Firefox Crash Setup (continued)

Figure 16: Mozilla Crash Reporting

Reviewing the data that Firefox would submit if the user left “Tell Mozilla about this
crash…” checked (default), the .extra file was found to contain the time of the crash,

68948f87 24 00

00

68948f88 0e 00

00

68948f89 5f

0:000> u 68948f6d

xul!nsAppShell::ProcessNextNativeEvent+0x35d:

68948f6d 84db test bl,bl

68948f6f 0f85dbfcffff jne (68948c50)

68948f75 e997fdffff jmp (68948d11)

68948f7a 8b4c2418 mov ecx,dword ptr [esp+18h]

68948f7e 8b11 mov edx,dword ptr [ecx]

68948f80 8b4234 mov eax,dword ptr [edx+34h]

68948f83 ff1500000000 call dword ptr ds:[0]

68948f89 5f pop edi

0:000> qd

21

Firefox version, crashing page URL, and report server URL, as well as Winsock version
information. Presumably if the user unchecked the include page address option, the
crashing page URL would be removed.

The dump was in some ways better at protecting information than Chrome. For example,
it did not contain a PEB, which means the dump excluded environment variables like
machine name and username. The dump did contain one of the tab’s URL (Figure 17), as
well as a path to the user’s profile, which contained the username (Figure 18).
Presumably, the crash reporter process does not scrub the dump for any residual sensitive
strings before submitting the report, regardless of the include address checkbox setting.

Figure 17: Firefox Dump Leaked URL

Figure 18: Firefox Dump Leaked Username

22

Internet Explorer
Using the same call pointer nullification method as in the previous browsers, IE crashed
and was automatically restarted by werfault.exe, the Windows Error Reporting program
(Figure 19). Because the first code unassembled in IE did not contain a call, an existing
compare instruction was intentionally replaced with a null call (Figure 20).

Figure 19: IE Crash Auto-Restart

It should be noted that when IE automatically restarted, it started out of InPrivate mode
and did not recall any of the previously open sites, which is a good design in terms of
protecting user privacy. Additionally, WER fault did not collect or upload a dump file
during testing. Instead, it first created an XML file at
C:\Users\testuser\AppData\Local\Temp\WERD8EC.tmp.WERInternalMetadata.xml, which
was deleted as soon as WER finished. WERFault.exe then generated a Report.wer file at
C:\Users\testuser\AppData\Local\Microsoft\Windows\WER\ReportArchive\AppCrash_iex
plore.exe_e5177260de2b2649acbc1073ca731d7f07aa98a_05321e81\Report.wer. This
file contained the crashing module, offset, and version information, as well as the loaded
module names from the IE process, as well as a few error message strings. It did not
contain any identifying information about the user or their browsing session. A copy of
the report can be seen in Figure 21 (loaded module list omitted for brevity).

23

Figure 20: IE Crash Setup

0:011> ~0s

eax=000000c0 ebx=00000113 ecx=7ffd4000 edx=00000030 esi=00000002 edi=001de4ac

eip=77457094 esp=001de460 ebp=001de480 iopl=0 nv up ei ng nz ac pe cy

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000297

ntdll!KiFastSystemCallRet:

77457094 c3 ret

0:000> k

ChildEBP RetAddr

001de45c 75a24473 ntdll!KiFastSystemCallRet

…

001de864 75a262f9 kernel32!WaitForMultipleObjectsExImplementation+0xe0

001de8b8 6f8d2006 USER32!RealMsgWaitForMultipleObjectsEx+0x13c

001de8dc 6f8d239f IEUI!CoreSC::Wait+0x50

…

001dfd38 00e81226 iexplore!wWinMain+0x391

…

001dfe30 00000000 ntdll!_RtlUserThreadStart+0x1b

0:000> u 6f8d2006 L3

IEUI!CoreSC::Wait+0x50:

6f8d2006 3dc0000000 cmp eax,0C0h

6f8d200b 74e7 je IEUI!CoreSC::Wait+0x3e (6f8d1ff4)

6f8d200d 5f pop edi

0:000> eb 6f8d2006

6f8d2006 3d ff

ff

6f8d2007 c0 15

15

6f8d2008 00 00

00

6f8d2009 00 00

00

6f8d200a 00 00

00

6f8d200b 74 00

00

6f8d200c e7

0:000> u 6f8d2006 L3

IEUI!CoreSC::Wait+0x50:

6f8d2006 ff1500000000 call dword ptr ds:[0]

6f8d200c e75f out 5Fh,eax

6f8d200e 3bc6 cmp eax,esi

0:000> qd

24

Figure 21: WER Report

Version=1
EventType=APPCRASH
EventTime=129982065798324231
ReportType=2
Consent=1
UploadTime=129982065801917981
ReportIdentifier=48701bee-35f3-11e2-9ffd-0800275e6093
IntegratorReportIdentifier=48701bed-35f3-11e2-9ffd-0800275e6093
Response.BucketId=3168233462
Response.BucketTable=1
Response.type=4
Sig[0].Name=Application Name
Sig[0].Value=iexplore.exe
Sig[1].Name=Application Version
Sig[1].Value=9.0.8112.16450
Sig[2].Name=Application Timestamp
Sig[2].Value=503723f6
Sig[3].Name=Fault Module Name
Sig[3].Value=IEUI.dll
Sig[4].Name=Fault Module Version
Sig[4].Value=9.0.8112.16450
Sig[5].Name=Fault Module Timestamp
Sig[5].Value=503721ca
Sig[6].Name=Exception Code
Sig[6].Value=c0000005
Sig[7].Name=Exception Offset
Sig[7].Value=00002006
DynamicSig[1].Name=OS Version
DynamicSig[1].Value=6.1.7601.2.1.0.768.2
DynamicSig[2].Name=Locale ID
DynamicSig[2].Value=1033
DynamicSig[22].Name=Additional Information 1
DynamicSig[22].Value=0a9e
DynamicSig[23].Name=Additional Information 2
DynamicSig[23].Value=0a9e372d3b4ad19135b953a78882e789
DynamicSig[24].Name=Additional Information 3
DynamicSig[24].Value=0a9e
DynamicSig[25].Name=Additional Information 4
DynamicSig[25].Value=0a9e372d3b4ad19135b953a78882e789
UI[2]=C:\Program Files\Internet Explorer\iexplore.exe
UI[3]=Internet Explorer has stopped working
UI[4]=Windows can check online for a solution to the problem and try to restart the program.
UI[5]=Check online for a solution and restart the program
UI[6]=Check online for a solution later and close the program
UI[7]=Close the program
LoadedModule[0]=C:\Program Files\Internet Explorer\iexplore.exe
…
ConsentKey=APPCRASH
AppName=Internet Explorer
AppPath=C:\Program Files\Internet Explorer\iexplore.exe

25

Opera
Again, the same method to induce a crash in the other browsers was used here (Figure
22). One interesting feature of Opera is it appears to handle its crashes by attaching
another instance of Opera to the crashing instance instead of using a separate crash
reporting utility. This new process not only handles the crash, but also prompts the user if
they want to restore their session. Like IE, it a restored session does not include private
browsing tabs.

When Opera crashed, an approximately 1.2 MB crash.txt file was written to
C:\Users\testuser\AppData\Local\Temp\opera-20121124005901. It contained mostly
sections of stack memory from Opera, including things like environment variables,
revealing the username and domain of the user (Figure 24). No URLs or page contents
from the session were observed in the file. Opera did not present any options or ask the
user if information about the crash could be uploaded.

Figure 22: Opera Crash Setup

0:011> ~0s

0:000> k

ChildEBP RetAddr

0014e6e0 76e8cde0 ntdll!KiFastSystemCallRet

0014e6e4 76e8ce13 USER32!NtUserGetMessage+0xc

0014e700 6ae090af USER32!GetMessageW+0x33

WARNING: Stack unwind information not available. Following frames may be wrong.

0014e774 6afbf45b Opera_6ac40000!OpSetLaunchMan+0x1c7e19

...

0:000> u 6ae090af L3

Opera_6ac40000!OpSetLaunchMan+0x1c7e19:

6ae090af 85c0 test eax,eax

6ae090b1 0f8529ffffff jne Opera_6ac40000!OpSetLaunchMan+0x1c7d4a (6ae08fe0)

6ae090b7 5f pop edi

0:000> eb 6ae090b1

6ae090b1 0f ff

ff

6ae090b2 85 15

15

6ae090b3 29 00

00

6ae090b4 ff 00

00

6ae090b5 ff 00

00

6ae090b6 ff 00

00

6ae090b7 5f

0:000> u 6ae090af L3

Opera_6ac40000!OpSetLaunchMan+0x1c7e19:

6ae090af 85c0 test eax,eax

6ae090b1 ff1500000000 call dword ptr ds:[0]

6ae090b7 5f pop edi

0:000> qd

26

Figure 23: Opera Restart

Figure 24: Opera crash log

OPERA-CRASHLOG V1 desktop 12.02 1578 windows

Opera.exe 1578 caused exception C0000005 at address 67C190B1 (Base: C80000)

Registers:

EAX=00000001 EBX=76E8CDE8 ECX=0000042C EDX=77BD7094 ESI=02109FB8

EDI=0210A044 EBP=0016E634 ESP=0016E5D8 EIP=67C190B1 FLAGS=00010202

CS=001B DS=0023 SS=0023 ES=0023 FS=003B GS=0000

FPU stack:

00000000000000000000 00000000000000000000 00000000000000000000

00000000000000000000 00000000000000000000 00000000000000000000

00000000000000000000 00000000000000000000 SW=0127 CW=027F

Stack dump:

0016E5D8 7773E868 00000400 00000000 0016FC24 hèsw.......$ü.

0016E5E8 7265704F 614D2061 57206E69 00646E69 Opera Main Wind.

…

00210FB0 55 00 53 00 45 00 52 00 44 00 4F 00 4D 00 41 00 U.S.E.R.D.O.M.A.

00210FC0 49 00 4E 00 3D 00 62 00 72 00 6F 00 77 00 73 00 I.N.=.b.r.o.w.s.

00210FD0 65 00 72 00 74 00 65 00 73 00 74 00 00 00 55 00 e.r.t.e.s.t...U.

00210FE0 53 00 45 00 52 00 4E 00 41 00 4D 00 45 00 3D 00 S.E.R.N.A.M.E.=.

00210FF0 74 00 65 00 73 00 74 00 75 00 73 00 65 00 72 00 t.e.s.t.u.s.e.r.

…

27

Safari
Unlike Chrome and Firefox, which have their own out of process crash handlers or Opera
with its self-contained handler, Safari does not provide its own crash reporting
mechanism. After inducing the crash (Figure 25), Windows Error Reporting captured the
crash (Figure 26) and uploaded a report to the Windows Error Reporting site. Apple can
later access these reports if they have registered as an ISV (Microsoft, 2012). The WER
Report did not contain any sensitive information – only the module, version information,
and exception record (Figure 27; loaded module information omitted for brevity).

Figure 25: Safari Crash Setup

0:026> ~0s

0:000> k

ChildEBP RetAddr

0030f508 7602cde0 ntdll!KiFastSystemCallRet

0030f50c 7602ce13 USER32!NtUserGetMessage+0xc

0030f528 6a7af4de USER32!GetMessageW+0x33

WARNING: Stack unwind information not available. Following frames may be wrong.

00000000 00000000 Safari_6a750000+0x5f4de

0:000> u 6a7af4de L2

Safari_6a750000+0x5f4de:

6a7af4de 83f8ff cmp eax,0FFFFFFFFh

6a7af4e1 74ba je Safari_6a750000+0x5f49d (6a7af49d)

0:000> eb 6a7af4de

6a7af4de 83 ff

ff

6a7af4df f8 15

15

6a7af4e0 ff 00

00

6a7af4e1 74 00

00

6a7af4e2 ba 00

00

6a7af4e3 85 00

00

6a7af4e4 c0

0:000> u 6a7af4de L2

Safari_6a750000+0x5f4de:

6a7af4de ff1500000000 call dword ptr ds:[0]

6a7af4e4 c074548b07 sal byte ptr [esp+edx*2-75h],7

0:000> qd

28

Figure 26: WER Dialog for Safari

Figure 27: WER Report for Safari

Version=1
EventType=APPCRASH
EventTime=129982488858088750
ReportType=2
Consent=1
UploadTime=129982488859963750
ReportIdentifier=c8e9f6b5-3655-11e2-9f71-0800275e6093
IntegratorReportIdentifier=c8e9f6b4-3655-11e2-9f71-0800275e6093
Response.BucketId=3272016251
Response.BucketTable=1
Response.type=4
Sig[0].Name=Application Name
Sig[0].Value=Safari.exe
Sig[1].Name=Application Version
Sig[1].Value=5.34.57.2
Sig[2].Name=Application Timestamp
Sig[2].Value=4f982b5e
Sig[3].Name=Fault Module Name
Sig[3].Value=Safari.dll
Sig[4].Name=Fault Module Version
Sig[4].Value=7534.57.2.4
Sig[5].Name=Fault Module Timestamp
Sig[5].Value=4f982b22
Sig[6].Name=Exception Code
Sig[6].Value=c0000005
Sig[7].Name=Exception Offset
Sig[7].Value=0005f4de
DynamicSig[1].Name=OS Version
DynamicSig[1].Value=6.1.7601.2.1.0.768.2
DynamicSig[2].Name=Locale ID
DynamicSig[2].Value=1033
DynamicSig[22].Name=Additional Information 1
DynamicSig[22].Value=0a9e
DynamicSig[23].Name=Additional Information 2

29

Figure 27: WER Report for Safari (continued)

Upon restarting Safari, it did not provide any indication that it had crashed. A new, empty,
normal session was created.

Test 4: Crashing Plug-In

Another possible attack vector for browser privacy modes is to leverage an extension that
intentionally crashes in the hopes of crashing the browser. As in test three, this could
result in a memory dump being saved to disk or uploaded to a crash submission site. This
memory dump could contain sensitive user information.

Chrome

As described in test 2, Chrome’s extension architecture consists of package
JavaScript/JSON/HTML files. Given that no native code is running in the extension, it
seems the only way an extension could cause a crash would be if it found and exposed a
bug in Chrome itself. This has occurred, such as the one documented at (Dunn, 2011),
however that bug has since been fixed. Attempting to find a bug in Chrome’s API is
outside the scope of this paper, so this test was not attempted on Chrome.

DynamicSig[23].Value=0a9e372d3b4ad19135b953a78882e789
DynamicSig[24].Name=Additional Information 3
DynamicSig[24].Value=0a9e
DynamicSig[25].Name=Additional Information 4
DynamicSig[25].Value=0a9e372d3b4ad19135b953a78882e789
UI[2]=C:\Program Files\Safari\Safari.exe
UI[3]=Safari has stopped working
UI[4]=Windows can check online for a solution to the problem.
UI[5]=Check online for a solution and close the program
UI[6]=Check online for a solution later and close the program
UI[7]=Close the program
LoadedModule[0]=C:\Program Files\Safari\Safari.exe
...
State[0].Key=Transport.DoneStage1
State[0].Value=1
State[1].Key=DataRequest
State[1].Value=Bucket=-1022951045/nBucketTable=1/nResponse=1/n
FriendlyEventName=Stopped working
ConsentKey=APPCRASH
AppName=Safari
AppPath=C:\Program Files\Safari\Safari.exe

30

Chrome does support NPAPI plugins (see Firefox section of this test for a description and
more information); however, Chrome places additional restrictions on these plugins, so
this is a less-likely attack vector on Chrome than on Firefox (Google, 2012).

Firefox

One of the aspects of Firefox that makes it so extensible is the variety of add-ons it
accepts. In addition to the script-based extensions as was used in test 2, Firefox can also
run native plugins built with the Gecko SDK. This includes native C++ code written using
the Netscape PlugIn Application Programming Interface (NPAPI). While other browsers
offer differing levels of support for NPAPI plugins, Mozilla fully supports them, due to its
ties to Netscape.

Firefox also uses a novel plugin-container process to host native plugins outside the main
Firefox process. This prevents a single native plugin’s crash from disrupting the user’s
browser session. There are two problems with this approach, as it relates to protecting a
user’s privacy in crash reporting. First, Mozilla may collect the URL of the page being
visited when a plugin crashes (Verdi, 2010). Second, Firefox may only silos select plugins
into external processes, not all of them (Wyman, 2010).

To test Firefox using a crashing plugin, the NPAPI sample code served as the basis for a
native Firefox plugin (Mozilla, 2007). Once loaded into the browser, the Firefox did create
a plugin-container process for the plugin. Upon triggering the crash, Firefox offered to
send a crash report to Mozilla (Figure 28).

Figure 28: Firefox Crash Report Prompt

A process monitor log revealed that when a crash occurs, Firefox stores a usermode
process minidump and an .extra file in %APPDATA%\Mozilla\Firefox\Crash
Reports\pending\. These files are left even if the user dismisses the send crash report
dialog.

In reviewing a dump and .extra file taken when the test NPAPI plugin crashed while loaded
in private browsing mode, it appears that no discernible user information is present. At
the time of the crash, two tabs were loaded – one on yahoo.com and the other on the
NPAPI text page bundled with the sample code that exposes the plugin’s functionality.
The .extra file was a plain-text document containing the URL of the crash report, the
Winsock version, the Firefox version, several timestamps, and the name of the crashing
plugin (Figure 29). The dump file was not a complete user mode memory dump, and only
contained stacks, registers, and small portions of memory. Searching the dump with both
a debugger and a hex editor, it contained no trace of either page URL, or any of the pages’
content or markup.

31

Figure 29: Firefox .extra file

This is reassuring, since anyone is able to lookup information from any crash on Mozilla’s
crash reporting site at https://crash-stats.mozilla.com/. The site even allows people to
filter by plugin name, so an attacker could reveal just the information from their plugin.

Internet Explorer

Internet Explorer loads extensions into its own process, which means a crashing extension
will also crash the browser. IE does launch multiple processes depending on the number
of tabs in use, and can recover if one of its instances crashes (Zeigler, 2008). However,
this still means that it is possible that a crashing extension could result in private
information being saved in a crash dump and potentially uploaded to Microsoft’s
Windows Error Reporting (WER) servers.

Winsock_LSP=MSAFD Tcpip [TCP/IP] : 2 : 1 : \n MSAFD Tcpip [UDP/IP] : 2 : 2 :
%SystemRoot%\\system32\\mswsock.dll \n MSAFD Tcpip [RAW/IP] : 2 : 3 : \n MSAFD Tcpip [TCP/IPv6] :
2 : 1 : %SystemRoot%\\system32\\mswsock.dll \n MSAFD Tcpip [UDP/IPv6] : 2 : 2 : \n MSAFD Tcpip
[RAW/IPv6] : 2 : 3 : %SystemRoot%\\system32\\mswsock.dll \n RSVP TCPv6 Service Provider : 2 : 1 : \n
RSVP TCP Service Provider : 2 : 1 : %SystemRoot%\\system32\\mswsock.dll \n RSVP UDPv6 Service
Provider : 2 : 2 : \n RSVP UDP Service Provider : 2 : 2 : %SystemRoot%\\system32\\mswsock.dll
AdapterVendorID=0x10de
EMCheckCompatibility=true
ProductName=Firefox
Vendor=Mozilla
InstallTime=1352338926
Theme=classic/1.0
Notes=AdapterVendorID: 0x10de, AdapterDeviceID: 0x0e23, AdapterSubsysID: 13663842,
AdapterDriverVersion: 9.18.13.697\nD2D? D2D+ DWrite? DWrite+ D3D10 Layers? D3D10 Layers+
Version=16.0.2
ReleaseChannel=release
ServerURL=https://crash-reports.mozilla.com/submit?id={ec8030f7-c20a-464f-9b0e-
13a3a9e97384}&version=16.0.2&buildid=20121024073032
AdapterDeviceID=0x0e23
Add-ons={972ce4c6-7e08-4474-a285-3208198ce6fd}:16.0.2
BuildID=20121024073032
ProductID={ec8030f7-c20a-464f-9b0e-13a3a9e97384}
CrashTime=1353508819
StartupTime=1353508768
ProcessType=plugin
PluginVersion=
PluginName=
PluginFilename=npapitest.dll

https://crash-stats.mozilla.com/

32

To test Internet Explorer’s handling of extension crashes, a slight modification was made
to the IE Extension used in test 2. In the function that is called when a page completes
loading, a test was added to check if the loaded URL contains “yale.edu”. If it does, the
extension calls Debugger.Break(). If a debugger is not attached, the process will crash.

Reviewing the data collected by Windows Error Reporting, it appears that only a text file
containing the crash reason and loaded modules was submitted (Figure 30). While WER
does have the ability to collect process mini-dumps, triggering this particular crash did not
lead to a submission. It is possible other classes of crashes could result in a dump being
upload, though that was not observed in testing.

It should also be noted that Microsoft’s System Center Desktop Error Monitoring product
allows IT administrators to collect crash information from their machines, so in a
corporate environment it is possible an IT administrator would receive crash dumps in this
situation (Vel, 2008). Even without System Center, an administrator can still configure
WER to save crash dumps (Microsoft Corporation, 2012).

Figure 30: WER Report from IE Extension Crash

Version=1
EventType=CLR20r3
EventTime=129978175308259746
ReportType=2
Consent=1
UploadTime=129978175352039043
ReportIdentifier=7540b50d-3269-11e2-a5ab-0800275e6093
IntegratorReportIdentifier=7540b50c-3269-11e2-a5ab-0800275e6093
Response.BucketId=50
Response.BucketTable=5
Response.type=4
Sig[0].Name=Problem Signature 01
Sig[0].Value=iexplore.exe
Sig[1].Name=Problem Signature 02
Sig[1].Value=9.0.8112.16455
Sig[2].Name=Problem Signature 03
Sig[2].Value=507284ba
Sig[3].Name=Problem Signature 04
Sig[3].Value=IEAddOn
Sig[4].Name=Problem Signature 05
Sig[4].Value=1.0.0.0
Sig[5].Name=Problem Signature 06
Sig[5].Value=50a939d5
Sig[6].Name=Problem Signature 07
Sig[6].Value=4
Sig[7].Name=Problem Signature 08

33

Figure 30: WER Report from IE Extension Crash (Continued)

Opera

Like with Chrome, Opera’s extensions generally utilize Opera’s JavaScript architecture,
which makes the browser more crash resistant to misbehaving plug-ins. Without finding a
flaw in Opera’s JavaScript processing engine or APIs, it is unlikely to cause a browser crash
from an extension.

Opera also supports NPAPI plugins, though in testing Opera did not pick up a NPAPI plug-
in installed on the system. Additionally, Opera’s NPAPI documentation implies that some
security boundaries are enforced for NPAPI plugins (Opera Software, 2008), and that

Sig[7].Value=4f
Sig[8].Name=Problem Signature 09
Sig[8].Value=Debugger.Break
DynamicSig[1].Name=OS Version
DynamicSig[1].Value=6.1.7601.2.1.0.768.2
DynamicSig[2].Name=Locale ID
DynamicSig[2].Value=1033
DynamicSig[22].Name=Additional Information 1
DynamicSig[22].Value=301c
DynamicSig[23].Name=Additional Information 2
DynamicSig[23].Value=301cf6e2b3f77c41ce76c3c05aac9deb
DynamicSig[24].Name=Additional Information 3
DynamicSig[24].Value=4330
DynamicSig[25].Name=Additional Information 4
DynamicSig[25].Value=4330a527e81099ec1a054fe374ced8bf
UI[2]=C:\Program Files\Internet Explorer\iexplore.exe
UI[3]=Internet Explorer has stopped working
UI[4]=Windows can check online for a solution to the problem.
UI[5]=Check online for a solution and close the program
UI[6]=Check online for a solution later and close the program
UI[7]=Close the program
LoadedModule[0]=C:\Program Files\Internet Explorer\iexplore.exe
…
LoadedModule[104]=C:\Windows\system32\FaultRep.dll
State[0].Key=Transport.DoneStage1
State[0].Value=1
State[1].Key=DataRequest
State[1].Value=Bucket=50/nBucketTable=5/nResponse=1/n
FriendlyEventName=Stopped working
ConsentKey=CLR20r3
AppName=Internet Explorer
AppPath=C:\Program Files\Internet Explorer\iexplore.exe

34

Opera is working on an Out-of-Process plugin model that may help protect user
information in the event of a crash (Mills, 2012).

Safari

This test was skipped on Safari, as Apple requires developers to sign an explicit agreement
that states that they will not produce extensions that intentionally interfere with the
operation of Safari. The other browsers tested in this section did not have a formal EULA
and registration process required to develop an extension.

Again, it should be noted that Safari’s extension platform appears to be JavaScript-based
like Chrome. As such, it is likely that a misbehaving extension would probably not result in
a browser crash. This has not been tested in the course of this paper, however.

Test 5: Abandoned Browser Reconnaissance

A final possible attack surface is an abandoned browser. This scenario could easily occur
in a library or web café setting. Consider a user browsing in private mode who
subsequently closes any tabs containing sensitive sites, but fails to close the browser
before stepping away.

A complete memory dump of the process will be created using Task Manager’s “Create
Dump File” option in the processes tab. This dump file could easily be copied to a thumb
drive and examined later by an attacker. In this test, the dump will be searched for
references to URLs and page content from the victim’s sensitive sites.

Chrome

For this test, Chrome was started directly in Incognito mode via its jump list from its
pinned taskbar icon. From the start page, two new tabs were created, yielding three tabs
all in Incognito mode. The first tab was left blank while the second tab was navigated to
burrough.org and the third tab to wikipedia.org/wiki/cockapoo. Once both pages
completed loading, both tabs were closed. After about 30 seconds, Task Manager was
used to create a dump file of the main Chrome process (Figure 31). Once completed, the
dump was saved to C:\Users\testuser\AppData\Local\Temp\chrome.DMP. It was 135
MB.

The dump was then copied off the VM and run against strings.exe (Russinovich, 2012) on a
different machine with these parameters: “strings.exe -n 10 chrome.dmp > chrome-
strings.txt”, which found all Unicode and ASCII strings 10 or more characters in length and

35

saved them to a text file, which was 17.8 MB. Grep was then used to find any lines that
contained burrough or cockapoo (case insensitive).

Figure 31: Dumping Chrome via Task Manager

The dump contained 104 strings of 10 or more characters with burrough in them and 162
strings containing cockapoo. Figure 32 and Figure 33 contain a sampling of the strings
found. An additional search for the Word Rochester (page contents from Burrough.org
contain the author’s CV, including Rochester Institute of Technology where he completed
his undergraduate degree), found seven hits:

grep -U -i Rochester chrome-strings.txt
Rochester, NY
Rochester Institute of Technology, Rochester, NY
Rochester Institute of Technology, Rochester, NY
Rochester Institute of Technology, Rochester, NY
Nathaniel Rochester Society Scholar, Rochester Institute of Technology, 2005
Presidential Scholar, Rochester Institute of Technology, 2003
rochester.museum

36

Figure 32: Sample of Burrough Strings in Chrome

Figure 33: Sample of Cockapoo Strings in Chrome

Firefox

Firefox was started in normal mode, and then immediacy placed into private browsing
mode from the Firefox menu. As with Chrome, two tabs were opened in addition to the
first blank tab, and these tabs were navigated to burrough.org and
Wikipedia.org/wiki/cockapoo. Once loaded, these two tabs were closed. After 30
seconds, the firefox.exe process was dumped with Task Manager. The 140 MB dump was
run through strings.exe on a different machine, and looking for strings ten characters long
or longer.

The resulting strings output was 10 MB. It included 111 lines containing Burrough, 455
lines containing Cockapoo, and 13 lines containing Rochester. Reviewing the text, it was
interesting to see that although each of these keywords had more hits than Chrome, there
were many more repeats of the same strings, and many of the hits were page URLs and
hyperlinks. There was very little page content in the strings. Examples can be seen in
Figure 34, Figure 35 and Figure 36. This illustrates a difference in how Chrome and
Firefox’s memory allocation/deallocation patterns.

Figure 34: Sample of Burrough Strings in Firefox

Matthew Burrough's CV - Google Chrome
http://www.burrough.org/pages/index.aspx
http://www.burrough.org/SiteImages/mcitp.png
burrough.org

Cockapoo - Wikipedia, the free encyclopedia - Google Chrome
http://wikipedia.org/wiki/cockapoo
A Cockapoo is a cross breed dog. It is the cross of an American Cocker Spaniel or English Cocker Spaniel

and a poodle (in most cases a miniature poodle or toy poodle), or of two cockapoos.
Cockapoos are often active and agile.
^ "Cockapoo Coat Colors". Cockapoo Club of GB. Retrieved 2012-03-09.

Matthew Burrough's CV
http://www.burrough.org/Pages/index.aspx
Matthew Burrough's CV - Mozilla Firefox (Private Browsing)
http://blogs.msdn.com/b/ntdebugging/archive/tags/burrough/
Transferring data from www.burrough.org
http://www.burrough.org/SiteImages/mcses.png

37

Figure 35: Sample of Cockapoo Strings in Firefox

Figure 36: All Rochester Strings in Firefox

Internet Explorer

Internet Explorer was also started directly into InPrivate mode via its jump list. After two
tabs had been created and fully loaded the Burrough.org and Wikipedia Cockapoo pages,
they were closed and a dump was created of the main iexplore.exe process 30 seconds
later. The dump was 99 MB, and yielded 9.8 MB of 10+ character strings.

Reviewing the grepped outputs for Burrough, Cockapoo, and Rochester, there were 80
hits for Burrough, 79 for Cockapoo, and none for Rochester. Possibly due to IE’s spate-
process-per-tab architecture, there were no strings for any of the page content from
either burrough.org or Wikipedia.org/wiki/cockapoo. All of the strings were URLs, links, or
the page title/title bar text. Samples are in Figure 37 and Figure 38.

Figure 37: Sample of Burrough Strings in IE

http://en.wikipedia.org/wiki/Cockapoo
Cockapoo - Wikipedia, the free encyclopedia - Mozilla Firefox (Private Browsing)
Like many floppy-eared breeds, Cockapoos can be subject to ear infections, and it's important

to keep their ears clean and dry.
kwww.americancockapooclub.com
kwww.cockapoo-owners-club.org.uk
/w/index.php?title=Cockapoo&action=history

Rochester
Rochester
Rochester
Nathaniel Rochester Society Scholar, Rochester Institute of Technology, 2005
Rochester,1
Rochester
, Rochester, NY
, Rochester, NY
, Rochester, NY
, Rochester, NY
Rochester
Institute of Technology, Rochester, NY</p>
rochester.museum

Matthew Burrough's CV - Windows Internet Explorer - [InPrivate]
http://www.burrough.org/Pages/index.aspx
burrough.org
www.burrough.org
http://www.burrough.org/favicon.ico

38

Figure 38: Sample of Cockapoo Strings in IE

Opera

Since Opera is unique in that its tabs – and not the window or process – are either in
private or normal mode, it was launched normally, followed by the creation of two private
tabs. Once the Burrough and Wikipedia pages loaded in those tabs, they were closed,
leaving just the normal mode blank tab. After 30 seconds, a 133 MB dump of opera.exe
was created with Task Manager. 10 MB of strings were then saved using strings.exe as in
the other browser’s tests in this section.

Of the strings, 39 contained Burrough, 210 cockapoo, and 6 Rochester. Samples are in
Figure 39, Figure 40, and Figure 41. The strings contained a mix of URLs and page
contents.

Figure 39: Sample of Burrough Strings in Opera

Figure 40: Sample of Cockapoo Strings in Opera

http://wikipedia.org/wiki/cockapoo
Cockapoo - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Cockapoo
Cockapoo - Wikipedia, the free encyclopedia - Windows Internet Explorer - [InPrivate]
ttp://en.wikipedia.org/w/index.php?title=Special:UserLogin&returnto=Cockapoo&type=signup

Address: http://www.burrough.org/Pages/index.aspx
www.burrough.org
burrough.org
Completed request to www.burrough.org
atthew Burrough's CV
http://blogs.msdn.com/b/ntdebugging/archive/tags/burrough/

/w/index.php?title=Cockapoo&action=history
tp://en.wikipedia.org/wiki/cockapoo
A healthy 12-week-old cockapoo.
of toy poodles, miniature poodles, cocker spaniels and cockapoos, using AKC standards and

other information.
Characteristics of the Cockapoo"
While some Cockapoos appear more similar to Cocker Spaniels, others will exhibit more Poodle
traits, creating a variation in Cockapoo appearance and temperament.
itle: Cockapoo - Wikipedia, the free encyclopedia
Address: http://en.wikipedia.org/wiki/Cockapoo

39

Figure 41: All Rochester Strings in Opera

Safari

Safari was launched in normal mode then immediately switched to private browsing
mode. As before, two new tabs were created, navigated to burrough.org and
Wikipedia.org/wiki/cockapoo, and then closed when loading finished. A dump of Safari
was captured using Task Manager when 30 seconds had elapsed with just the blank
original tab open. The 133 MB dump contained 13.5 MB of 10+ character strings. Among
these were 308 Burrough strings, 532 Cockapoo strings, and 8 Rochester strings.

What was interesting about Safari was that, in spite of the large number of strings, none
was for page content. Each was a URL, link, or page title. In fact, the only reason
Rochester appeared at all was Safari seems to pull news RSS feeds automatically for
several sites, and included in these were a few stories about Rochester. None of the
Rochester hits was related to the Burrough.org page.

Figure 42: Sample of Burrough Strings in Safari

Figure 43: Sample of Cockapoo Strings in Safari

Rochester, NY
 Rochester, NY
 Rochester, NY
Presidential Scholar, Rochester Institute of Technology, 2003
Nathaniel Rochester Society Scholar, Rochester Institute of Technology, 2005
 Rochester, NY

http://www.burrough.org/Pages/index.aspx
http://burrough.org/
http://www.burrough.org/SiteImages/SBE-Certified.jpg
www.burrough.org
Matthew Burrough's CV

http://wikipedia.org/wiki/cockapoo
http://en.wikipedia.org/wiki/Cockapoo
http://upload.wikimedia.org/wikipedia/commons/thumb/2/20/Twelve_%2812%29_Week_Old

Cockapoo.jpg/220px-Twelve%2812%29_Week_Old_Cockapoo.jpg
Cockapoo - Wikipedia, the free encyclopedia

40

Conclusion

Based on the results of the five tests, it is clear that no browser is without flaws when it
comes to information disclosure about private browsing sessions. Generally, browsers
were good about not leaving files from the private session on the disk, but did a poor job
protecting users when tabs were closed but the browser was not. The most varied
behavior came in the form of how browsers handle plugins during private browsing. At
best, the browser provides warnings that plugins may cause data leaks during private
browsing, and allow the plugins to be enabled or disabled individually for privacy mode,
like Chrome and Opera. At worst, they run plugins by default in privacy mode with no
warning, such as with Firefox and Safari. In between is Internet Explorer’s design where
plugins are loaded all-or-nothing in privacy mode.

In terms of crash reporting, the best behavior is when a browser only submits text files
about a crash with limited information and no memory dump cached on the disk. Almost
as good is when always asks if the user would like to submit a report, and offers to scrub
some information, as Firefox does. However, Firefox’s offer to not include the current
page URL may give users a false sense of security, since that data can probably be retried
from the dump file. Additionally, some of the crash data submitted to Mozilla is available
publically on their website. Chrome’s design is particularly lacking in that the dump
contains a fair amount of information, is submitted without prompting the user, and the
last dump collected is preserved in the user’s profile on disk.

Figure 44 gives a subjective assessment of how each browser did for each test, where
green indicates best performance, yellow indicates some troubling behavior, red indicates
a strong concern, and black indicates a test was not performed or was inconclusive.

Figure 44: Subjective Assessment of Browser Performance

41

Appendix A – Screenshots of Testing Webpages

This section contains screenshots of each page used for testing as it appeared during the
tests.

NPAPI Test Page

42

Burrough.org Page

43

Wikipedia Cockapoo Page

44

References

Aggarwal, G., Bursztein, E., Jackson, C., & Boneh, D. (2010). An analysis of private browsing

modes in modern browsers. Proc. of 19th Usenix Security Symposium.
Barnabe, J. (2007, May 28). Urlclassifier2.sqlite. Retrieved November 21, 2012, from

mozillaZine: http://kb.mozillazine.org/Urlclassifier2.sqlite
Ben. (2005, August 4). Building an extension. Retrieved November 20, 2012, from Mozilla

Developer Network: https://developer.mozilla.org/en-
US/docs/Building_an_Extension

cor-el. (2012, May 8). Are extentions disabled in private browsing in firefox??? Retrieved
November 20, 2012, from Mozilla Support: https://support.mozilla.org/en-
US/questions/926986

Dunn, N. (2011, May 3). Issue 81400: Extension API causing crash. chrome.windows.create
causes crash if only a single app mode window is open. Retrieved November 18,
2012, from Chromium Issues:
http://code.google.com/p/chromium/issues/detail?id=81400

Google. (2012). NPAPI Plugins. Retrieved November 20, 2012, from Google Chrome
Extensions: http://developer.chrome.com/extensions/npapi.html

Gould, S. (2008). See inside index.dat files. Retrieved November 21, 2012, from
stevengould.org:
http://www.stevengould.org/index.php?option=com_content&task=view&id=47
&Itemid=88

Jones, K. (2010, May 23). Writing a Managed Internet Explorer Extension: Part 1. Retrieved
November 18, 2012, from Random Agile Thoughts:
http://msmvps.com/blogs/vcsjones/archive/2010/05/23/writing-a-managed-
internet-explorer-extension-part-1.aspx

Jung, E. (2007, January 30). On page load. Retrieved November 20, 2012, from Mozilla
Developer Network: https://developer.mozilla.org/en-
US/docs/Code_snippets/On_page_load

Kornblum, J., & Metz, J. (2007, March 10). Internet Explorer History File Format. Retrieved
November 21, 2012, from Forensics Wiki:
http://www.forensicswiki.org/wiki/Internet_Explorer_History_File_Format#REDR
_Records

Mahendrakar, A., Irving, J., & Patel, S. (2011). Forensic analysis of private browsing
artifacts. Innovations in Information Technology (IIT) (pp. 197-202). IEEE.

Microsoft. (2012, February 13). Windows Error Reporting: Getting Started. Retrieved
November 24, 2012, from Dev Center - Hardware: http://msdn.microsoft.com/en-
us/library/windows/hardware/gg487440.aspx

Microsoft Corporation. (2012, October 16). Collecting User-Mode Dumps (Windows).
Retrieved November 19, 2012, from Windows Dev Center - Desktop:
http://msdn.microsoft.com/en-
us/library/windows/desktop/bb787181%28v=vs.85%29.aspx

45

Mills, C. (2012, February 9). 64-bit Opera, and out-of-process plug-ins. Retrieved
November 20, 2012, from DEV.Opera: http://dev.opera.com/articles/view/64-bit-
opera-and-out-of-process-plug-ins/

Mozilla. (2007, September 21). NpRuntime. Retrieved November 20, 2012, from Mozilla
Samples:
http://mxr.mozilla.org/firefox/source/modules/plugin/samples/npruntime/

Opera Software. (2008, January 18). The Opera plug-in interface. Retrieved November 20,
2012, from DEV.Opera: http://dev.opera.com/articles/view/the-opera-plug-in-
interface/#security

Russinovich, M. (2012, May 14). Strings v2.5. Retrieved November 24, 2012, from
Windows Sysinternals: http://technet.microsoft.com/en-
us/sysinternals/bb897439.aspx

Sofer, N. (2012). Web Browser Tools Package. Retrieved November 21, 2012, from NirSoft:
http://www.nirsoft.net/web_browser_tools.html

Soghoian, C. (2010). Private Browsing Modes Do Not Deliver Real Privacy. IAB Internet
Privacy Workshop. Boston.

Vel, S. (2008, May 23). Troubleshooting Agentless Exception Monitoring and Desktop Error.
Retrieved November 19, 2012, from TechNet: http://blogs.technet.com/cfs-
filesystemfile.ashx/__key/communityserver-components-postattachments/00-
03-06-00-25/Troubleshooting-AEM-and-DEM.docx

Verdi, M. (2010, June 30). Send plugin crash reports to help Mozilla improve Firefox.
Retrieved November 20, 2012, from Mozilla Support:
http://support.mozilla.org/en-US/kb/send-plugin-crash-reports-help-improve-
firefox#w_what-information-is-sent-in-a-crash-report

West, M. (2012). WebNavigation Tech Demo. Retrieved November 18, 2012, from Google
Chrome Extensions - Sample Extensions:
http://developer.chrome.com/extensions/examples/api/webNavigation/basic.zip

Wyman, A. (2010, July 14). Plugin-container and out-of-process plugins. Retrieved
November 20, 2012, from mozillaZine: http://kb.mozillazine.org/Plugin-
container_and_out-of-process_plugins

Zeigler, A. (2008, July 28). IE8 and Reliability. Retrieved November 18, 2012, from IEBlog:
http://blogs.msdn.com/b/ie/archive/2008/07/28/ie8-and-reliability.aspx

	Abstract
	Introduction
	Test Machine Configuration
	Chrome
	Firefox
	Internet Explorer
	Opera
	Safari

	Test 1: Monitoring for residual files
	Chrome
	Firefox
	Internet Explorer
	Opera
	Safari

	Test 2: Spying Browser Extension
	Chrome
	Firefox
	Internet Explorer
	Opera
	Safari

	Test 3: Crashing Browser
	Chrome
	Firefox
	Internet Explorer
	Opera
	Safari

	Test 4: Crashing Plug-In
	Chrome
	Firefox
	Internet Explorer
	Opera
	Safari

	Test 5: Abandoned Browser Reconnaissance
	Chrome
	Firefox
	Internet Explorer
	Opera
	Safari

	Conclusion
	Appendix A – Screenshots of Testing Webpages
	References

